#' Ambient profile from bimodality
#'
#' Estimate the concentration of each feature in the ambient solution from a filtered count matrix containing only counts for cells,
#' by assuming that each feature has a bimodal abundance distribution with ambient and high-expressing components.
#'
#' @param x A numeric matrix-like object containing counts for each feature (row) and cell (column).
#' Alternatively, a \linkS4class{SummarizedExperiment} object containing such a matrix.
#' @param min.prop Numeric scalar in (0, 1) specifying the expected minimum proportion of barcodes contributed by each sample.
#' @param assay.type Integer or scalar specifying the assay containing the count matrix.
#' @param ... For the generic, further arguments to pass to individual methods.
#'
#' For the SummarizedExperiment method, further arguments to pass to the ANY method.
#'
#' For \code{inferAmbience}, arguments to pass to \code{ambientProfileBimodal}.
#'
#' @return A numeric vector of length equal to \code{nrow(x)}, containing the estimated ambient proportions for each feature.
#'
#' @details
#' In some cases, we want to know the ambient profile but we only have the count matrix for the cell-containing libraries.
#' This can be useful in functions such as \code{\link{hashedDrops}} or as a reference profile in \code{\link{medianSizeFactors}}.
#' However, as we only have the cell-containing libraries, we cannot use \code{\link{ambientProfileEmpty}}.
#'
#' This function estimates the ambient profile by assuming that each feature only labels a minority of the cells.
#' Under this assumption, each feature's log-count distribution has a bimodal distribution where the lower mode represents ambient contamination.
#' This is generally reasonable for tag-based applications like cell hashing or CITE-seq where data is usually binary, i.e., the marker is either present or not.
#' We fit a two-component mixture model and identify all barcodes assigned to the lower component;
#' and the mean of those counts is used as an estimate of the ambient contribution.
#'
#' The initialization of the mixture model is controlled by \code{min.prop},
#' which starts the means of the lower and upper components at the \code{min.prop} and \code{1-min.prop} quantiles, respectively.
#' This means that each sample is expected to contribute somewhere between \code{[min.prop, 1-min.prop]} barcodes.
#' Larger values improve convergence but require stronger assumptions about the relative proportions of multiplexed samples.
#'
#' \code{inferAmbience} is soft-deprecated; use \code{ambientProfileBimodal} instead.
#'
#' @seealso
#' \code{\link{hashedDrops}}, where this function is used in the absence of an ambient profile.
#'
#' \code{\link{ambientProfileEmpty}}, which should be used when the raw matrix (prior to filtering for cells) is available.
#'
#' \code{\link{ambientContribSparse}} and related functions, to estimate the contribution of ambient contamination in each library.
#'
#' @author Aaron Lun
#'
#' @examples
#' x <- rbind(
#' rpois(1000, rep(c(100, 1), c(100, 900))),
#' rpois(1000, rep(c(2, 100, 2), c(100, 100, 800))),
#' rpois(1000, rep(c(3, 100, 3), c(200, 700, 100)))
#' )
#'
#' # Should be close to 1, 2, 3
#' ambientProfileBimodal(x)
#'
#' @name ambientProfileBimodal
NULL
.ambient_profile_bimodal <- function(x, min.prop=0.05) {
ambient <- numeric(nrow(x))
names(ambient) <- rownames(x)
for (i in seq_along(ambient)) {
current <- x[i,]
chosen <- .get_lower_dist(log1p(current), min.prop)
ambient[i] <- mean(current[chosen])
}
ambient
}
#' @export
#' @rdname ambientProfileBimodal
inferAmbience <- function(...) {
ambientProfileBimodal(...)
}
#' @importFrom stats kmeans quantile
.get_lower_dist <- function(x, p)
# Effectively using Lloyd's algorithm as a special case of mixture models,
# to (i) avoid code dependencies and (ii) avoid problems with non-normal data.
{
q <- quantile(x, c(p, 1-p))
if (q[1]==q[2]) {
# kmeans() fails in this case, so we just set everything less than or
# equal to q[2] as the 'lower'. This should really only happen when
# almost all counts are zero, at which point this may as well be zero.
x <= q[2]
} else {
out <- kmeans(x, centers=q)
out$cluster == which.min(out$centers)
}
}
#' @export
#' @rdname ambientProfileBimodal
setGeneric("ambientProfileBimodal", function(x, ...) standardGeneric("ambientProfileBimodal"))
#' @export
#' @rdname ambientProfileBimodal
setMethod("ambientProfileBimodal", "ANY", .ambient_profile_bimodal)
#' @export
#' @rdname ambientProfileBimodal
#' @importFrom SummarizedExperiment assay
setMethod("ambientProfileBimodal", "SummarizedExperiment", function(x, ..., assay.type="counts") {
.ambient_profile_bimodal(assay(x, assay.type), ...)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.