#' Backgound correction and signal smoothing per chromosome
#'
#' Split the ratios by chromosome and do background correction and signal smoothing.
#'
#' @param se An object of
#' \link[SummarizedExperiment:RangedSummarizedExperiment-class]{RangedSummarizedExperiment}
#' with log2-transformed ratios, CPMRatios or OddRatios. Output of \link{log2se}
## Why not include these parameters in tileCount.R??
#' @param chr A character vector, used to filter out seqnames. It should be the
#' chromosome names to be kept.
#' @param ratioAssay The name of assay in se, which store the values (log2-transformed ratios,
#' CPMRatios or OddRatios) to be smoothed.
#' @param backgroundCorrectedAssay,smoothedRatioAssay,zscoreAssay character(1).
#' Assays names for background corrected ratios, smoothed ratios and
#' z-scores based on background corrected ratios.
#' @param backgroundPercentage numeric(1). Percentage of values for background,
#' see \link{zscoreOverBck}. The percentage of values lower than this threshold
#' will be treated as background, with 25 percentile as default.
#' @param chrom.level.background logical(1): TRUE or FALSE, default to TRUE, use chromosome-level
#' background to calculate z-score
#' @param ... Parameters could be passed to \link{butterFilter}.
#' @importFrom methods is
#' @export
#' @return A \link[S4Vectors:SimpleList-class]{SimpleList} of
#' \link[SummarizedExperiment:RangedSummarizedExperiment-class]{RangedSummarizedExperiment}
#' with smoothed ratios.
#' @author Jianhong Ou, Haibo Liu and Julie Zhu
#' @examples
#'
#' data(single.count)
#' se <- single.count
#' dat <- log2se(se, nucleolusCols="N18.subsampled.srt.bam", genomeCols="G18.subsampled.srt.bam",
#' transformation="log2CPMRatio")
#' dat1 <- smoothRatiosByChromosome(dat, N=100, chr = c("chr18", "chr19"))
#' dat2 <- smoothRatiosByChromosome(dat, N=100, chr = c("chr18", "chr19"),
#' chrom.level.background = FALSE)
#'
smoothRatiosByChromosome <- function(se,
chr = paste0("chr",
c(seq_len(21), "X", "Y")),
ratioAssay = "ratio",
backgroundCorrectedAssay = "bcRatio",
smoothedRatioAssay = "smoothedRatio",
zscoreAssay = "zscore",
backgroundPercentage = 0.25,
chrom.level.background = TRUE,
...)
{
stopifnot(is(se, "RangedSummarizedExperiment"))
stopifnot(length(ratioAssay) == 1)
stopifnot(ratioAssay %in% names(assays(se)))
## for computing z-score using global background
if (!chrom.level.background)
{
all.ratios <- assays(se)$ratio
bg.percentile <-
quantile(all.ratios, probs = backgroundPercentage)
bg.ratios <- all.ratios[all.ratios <= bg.percentile]
pop.sd <-
sd(bg.ratios) * sqrt(length(bg.ratios) - 1) / sqrt(length(bg.ratios))
pop.mean <- mean(bg.ratios)
}
## split se to get rse for each chromosome
se <- split(se, as.character(seqnames(rowRanges(se))))
se <- se[names(se) %in% chr]
se <- lapply(se, function(.ele)
{
if (class(assays(.ele)[[ratioAssay]]) != "matrix")
{
assays(.ele)[[ratioAssay]] <- as.matrix(assays(.ele)[[ratioAssay]])
}
assays(.ele)[[backgroundCorrectedAssay]] <-
apply(assays(.ele)[[ratioAssay]],
2, backgroundCorrection)
assays(.ele)[[smoothedRatioAssay]] <-
apply(assays(.ele)[[backgroundCorrectedAssay]],
2, function(.e)
butterFilter(.e, ...))
if (chrom.level.background)
{
assays(.ele)[[zscoreAssay]] <-
apply(assays(.ele)[[smoothedRatioAssay]],
2, function(.e)
zscoreOverBck(.e, backgroundPercentage))
} else
{
assays(.ele)[[zscoreAssay]] <-
apply(assays(.ele)[[smoothedRatioAssay]],
2, function(.e) {
(.e - pop.mean) / pop.sd })
}
.ele
})
se <- SimpleList(se)
se
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.