#' Get Mean Ratio for Each Gene x Cell Type (Old internal version)
#'
#' Calculate the mean ratio value and rank for each gene for each cell type in the `sce`
#' object, to identify effective marker genes for deconvolution.
#'
#' Improved efficiency and ability to handle large data sets from `get_mean_ratio()`.
#'
#' @param sce [SummarizedExperiment-class][SummarizedExperiment::SummarizedExperiment-class] object
#' @param cellType_col A `character(1)` name of the column in the
#' [colData()][SummarizedExperiment::SummarizedExperiment-class] of `sce` that
#' denotes the cell type or group of interest
#' @param assay_name A `character(1)` specifying the name of the
#' [assay()][SummarizedExperiment::SummarizedExperiment-class] in the
#' `sce` object to use to rank expression values. Defaults to `logcounts` since
#' it typically contains the normalized expression values.
#' @param add_symbol a logical indicating whether the gene symbol column to the marker stats table
#'
#' @return Table of mean ratio for each x cell type
#' @export
#'
#'
#' @examples
#' #' ## load example SingleCellExperiment
#' if (!exists("sce_DLPFC_example")) sce_DLPFC_example <- fetch_deconvo_data("sce_DLPFC_example")
#'
#' ## Get the mean ratio for each gene for each cell type defined in `cellType_broad_hc`
#' .get_mean_ratio2(sce_DLPFC_example, cellType_col = "cellType_broad_hc")
#'
#' # gene cellType.target mean.target cellType mean ratio rank_ratio anno_ratio
#' #<chr> <fct> <dbl> <fct> <dbl> <dbl> <int> <chr>
#' # 1 CD22 Oligo 1.36 OPC 0.0730 18.6 1 Oligo/OPC: 18.625
#' # 2 LINC01608 Oligo 2.39 Micro 0.142 16.8 2 Oligo/Micro: 16.829
#' # 3 FOLH1 Oligo 1.59 OPC 0.101 15.7 3 Oligo/OPC: 15.684
#' # 4 SLC5A11 Oligo 2.14 Micro 0.145 14.7 4 Oligo/Micro: 14.697
#' # 5 AC012494.1 Oligo 2.42 OPC 0.169 14.3 5 Oligo/OPC: 14.282
#'
#' @importFrom dplyr mutate
#' @importFrom dplyr arrange
#' @importFrom purrr map
#' @importFrom purrr map2
#' @importFrom matrixStats rowMedians
#' @keywords internal
.get_mean_ratio2 <- function(sce, cellType_col = "cellType", assay_name = "logcounts", add_symbol = TRUE) {
# RCMD fix
cellType.target <- NULL
cellType <- NULL
ratio <- NULL
cell_types <- unique(sce[[cellType_col]])
names(cell_types) <- cell_types
sce_assay <- as.matrix(SummarizedExperiment::assays(sce)[[assay_name]])
## Get mean expression for each gene for each cellType
cell_means <- map(cell_types, ~ as.data.frame(base::rowMeans(sce_assay[, sce[[cellType_col]] == .x])))
cell_means <- do.call("rbind", cell_means)
colnames(cell_means) <- "mean"
## Define columns
cell_means$cellType <- rep(cell_types, each = nrow(sce))
cell_means$gene <- rep(rownames(sce), length(cell_types))
# print(head(cell_means))
## Filter and calculate ratio for each celltype
ratio_tables <- map(cell_types, ~ .get_ratio_table(.x, sce, sce_assay, cellType_col, cell_means))
ratio_tables <- do.call("rbind", ratio_tables)
# max_digits <- nchar(max(ratio_tables$ratio_tables))
if (add_symbol) {
ratio_tables$Symbol <- SummarizedExperiment::rowData(sce)[ratio_tables$gene, ]$Symbol
# ratio_tables <- ratio_tables |>
# mutate(ratio_anno = paste0(stringr::str_pad(rank_ratio, max_digits, "left"),": ",Symbol))
}
ratio_tables <- ratio_tables |>
mutate(anno_ratio = paste0(cellType.target, "/", cellType, ": ", base::round(ratio, 3)))
return(ratio_tables)
}
.get_ratio_table <- function(x, sce, sce_assay, cellType_col, cell_means) {
# RCMD Fix
mean.target <- NULL
gene <- NULL
ratio <- NULL
cellType.target <- NULL
cellType <- NULL
# filter target median != 0
median_index <- matrixStats::rowMedians(sce_assay[, sce[[cellType_col]] == x]) != 0
# message("Median == 0: ", sum(!median_index))
# filter for target means
target_mean <- cell_means[cell_means$cellType == x, ]
target_mean <- target_mean[median_index, ]
colnames(target_mean) <- c("mean.target", "cellType.target", "gene")
nontarget_mean <- cell_means[cell_means$cellType != x, ]
ratio_table <- dplyr::left_join(target_mean, nontarget_mean, by = "gene") |>
mutate(ratio = mean.target / mean) |>
dplyr::group_by(gene) |>
arrange(ratio) |>
dplyr::slice(1) |>
dplyr::select(gene, cellType.target, mean.target, cellType, mean, ratio) |>
arrange(-ratio) |>
dplyr::ungroup() |>
mutate(rank_ratio = dplyr::row_number())
return(ratio_table)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.