R/normalizeCounts.R

Defines functions .check_methods .transform_sparse .choose_transform .downsample_counts .center.size.factors .get_default_sizes

#' Compute normalized expression values
#'
#' Compute (log-)normalized expression values by dividing counts for each cell by the corresponding size factor.
#'
#' @param x A numeric matrix-like object containing counts for cells in the columns and features in the rows.
#'
#' Alternatively, a \linkS4class{SingleCellExperiment} or \linkS4class{SummarizedExperiment} object containing such a count matrix.
#' @param assay.type A string or integer scalar specifying the assay of \code{x} containing the count matrix.
#' @param size.factors A numeric vector of cell-specific size factors.
#' Alternatively \code{NULL}, in which case the size factors are computed from \code{x}.
#' @param log Logical scalar indicating whether normalized values should be log2-transformed.
#' This is retained for back-compatibility and will override any setting of \code{transform}.
#' Users should generally use \code{transform} instead to specify the transformation.
#' @param transform String specifying the transformation (if any) to apply to the normalized expression values.
#' @param pseudo.count Numeric scalar specifying the pseudo-count to add when \code{transform="log"}.
#' @param center.size.factors Logical scalar indicating whether size factors should be centered at unity before being used.
#' @param subset.row A vector specifying the subset of rows of \code{x} for which to return normalized values.
#' If \code{size.factors=NULL}, the size factors are also computed from this subset.
#' @param normalize.all Logical scalar indicating whether to return normalized values for all genes.
#' If \code{TRUE}, any non-\code{NULL} value for \code{subset.row} is only used to compute the size factors.
#' Ignored if \code{subset.row=NULL} or \code{size.factors} is supplied.
#' @param downsample Logical scalar indicating whether downsampling should be performed prior to scaling and log-transformation.
#' @param down.target Numeric scalar specifying the downsampling target when \code{downsample=TRUE}.
#' If \code{NULL}, this is defined by \code{down.prop} and a warning is emitted.
#' @param down.prop Numeric scalar between 0 and 1 indicating the quantile to use to define the downsampling target.
#' Only used when \code{downsample=TRUE}.
#' @param ... For the generic, arguments to pass to specific methods.
#'
#' For the SummarizedExperiment method, further arguments to pass to the ANY or \linkS4class{DelayedMatrix} methods.
#' 
#' For the SingleCellExperiment method, further arguments to pass to the SummarizedExperiment method.
#' @param BPPARAM A \linkS4class{BiocParallelParam} object specifying how library size factor calculations should be parallelized.
#' Only used if \code{size.factors} is not specified.
#' @param exprs_values,size_factors,pseudo_count,center_size_factors,subset_row,down_target,down_prop
#' Soft-deprecated equivalents to the arguments described previously.
#'
#' @details 
#' Normalized expression values are computed by dividing the counts for each cell by the size factor for that cell.
#' This removes cell-specific scaling biases due to differences in sequencing coverage, capture efficiency or total RNA content.
#' The assumption is that such biases affect all genes equally (in a scaling manner) and thus can be removed through division by a per-cell size factor.
#'
#' If \code{transform="log"}, log-normalized values are calculated by adding \code{pseudo.count} to the normalized count and performing a log2-transformation.
#' Differences in values between cells can be interpreted as log-fold changes, which are generally more relevant than differences on the untransformed scale.
#' This provides a suitable input to downstream functions computing, e.g., Euclidean differences, which are effectively an average of the log-fold changes across genes.
#' 
#' Alternatively, if \code{transform="asinh"}, an inverse hyperbolic transformation is performed.
#' This is commonly used in cytometry and converges to the log2-transformation at high normalized values. 
#' (We adjust the scale so that the results are comparable to log2-values, though the actual definition uses natural log.)
#' For non-negative inputs, the main practical difference from a log2-transformation is that there is a bigger gap between transformed values derived from zero and those derived from non-zero inputs.
#' 
#' If the size factors are \code{NULL}, they are determined automatically from \code{x}.
#' The sum of counts for each cell is used to compute a size factor via the \code{\link{librarySizeFactors}} function.
#' For the SingleCellExperiment method, size factors are extracted from \code{\link{sizeFactors}(x)} if available, otherwise they are computed from the assay containing the count matrix.
#'
#' If \code{subset.row} is specified, the output of the function is equivalent to supplying \code{x[subset.row,]} in the first place.
#' The exception is if \code{normalize.all=TRUE}, in which case \code{subset.row} is only used during the size factor calculation;
#' once computed, the size factors are then applied to all genes and the full matrix is returned. 
#'
#' @section Centering the size factors:
#' If \code{center.size.factors=TRUE}, size factors are centred at unity prior to calculation of normalized expression values.
#' This ensures that the computed expression values can be interpreted as being on the same scale as original counts.
#' We can then compare abundances between features normalized with different sets of size factors; the most common use of this fact is in the comparison between spike-in and endogenous abundances when modelling technical noise (see \code{\link[scran]{modelGeneVarWithSpikes}} package for an example).
#'
#' In the specific case of \code{transform="log"}, centering of the size factors ensures the pseudo-count can actually be interpreted as a \emph{count}.
#' This is important as it implies that the pseudo-count's impact will diminish as sequencing coverage improves.
#' Thus, if the size factors are centered, differences between log-normalized expression values will more closely approximate the true log-fold change with increasing coverage, whereas this would not be true of other metrics like log-CPMs with a fixed offset.
#'
#' The disadvantage of using centered size factors is that the expression values are not directly comparable across different calls to \code{\link{normalizeCounts}}, typically for multiple batches.
#' In theory, this is not a problem for metrics like the CPM, but in practice, we have to apply batch correction methods anyway to perform any joint analysis - see \code{\link[batchelor]{multiBatchNorm}} for more details. 
#'
#' @section Downsampling instead of scaling:
#' If \code{downsample=TRUE}, counts for each cell are randomly downsampled instead of being scaled.
#' This is occasionally useful for avoiding artifacts caused by scaling count data with a strong mean-variance relationship.
#' Each cell is downsampled according to the ratio between \code{down.target} and that cell's size factor.
#' (Cells with size factors below the target are not downsampled and are directly scaled by this ratio.)
#' Any transformation specified by \code{transform} is then applied to the downsampled counts.
#'
#' We automatically set \code{down.target} to the 1st percentile of size factors across all cells involved in the analysis,
#' but this is only appropriate if the resulting expression values are not compared across different \code{normalizeCounts} calls.
#' To obtain expression values that are comparable across different \code{normalizeCounts} calls
#' (e.g., in \code{\link[scran]{modelGeneVarWithSpikes}} or \code{\link[batchelor]{multiBatchNorm}}),
#' \code{down_target} should be manually set to a constant target value that can be considered a low size factor in every call.
#'  
#' @return 
#' A numeric matrix-like object containing normalized expression values, possibly transformed according to \code{transform}.
#' This has the same dimensions as \code{x}, unless \code{subset.row} is specified and \code{normalize.all=FALSE}.
#'
#' @author Aaron Lun
#'
#' @seealso
#' \code{\link{logNormCounts}}, which wraps this function for convenient use with SingleCellExperiment instances.
#'
#' \code{\link{librarySizeFactors}}, to compute the default size factors.
#'
#' \code{\link{downsampleMatrix}}, to perform the downsampling.
#' @examples
#' example_sce <- mockSCE()
#'
#' # Standard scaling + log-transformation:
#' normed <- normalizeCounts(example_sce)
#' normed[1:5,1:5]
#'
#' # Scaling without transformation:
#' normed <- normalizeCounts(example_sce, log=FALSE)
#' normed[1:5,1:5]
#'
#' # Downscaling with transformation:
#' normed <- normalizeCounts(example_sce, downsample=TRUE)
#' normed[1:5,1:5]
#'
#' # Using custom size factors:
#' with.meds <- computeMedianFactors(example_sce)
#' normed <- normalizeCounts(with.meds)
#' normed[1:5,1:5]
#' 
#' @name normalizeCounts
NULL

#' @export
#' @rdname normalizeCounts
setGeneric("normalizeCounts", function(x, ...) standardGeneric("normalizeCounts"))

#' @export
#' @rdname normalizeCounts
#' @importFrom BiocParallel SerialParam
setMethod("normalizeCounts", "ANY", function(x, size.factors=NULL, 
    log=NULL, transform=c("log", "none", "asinh"), pseudo.count=1, 
    center.size.factors=TRUE, subset.row=NULL, normalize.all=FALSE, 
    downsample=FALSE, down.target=NULL, down.prop=0.01, BPPARAM=SerialParam(),
    size_factors=NULL, pseudo_count=NULL, center_size_factors=NULL,
    subset_row=NULL, down_target=NULL, down_prop=NULL)
{
    subset.row <- .replace(subset.row, subset_row)
    size.factors <- .replace(size.factors, size_factors)
    center.size.factors <- .replace(center.size.factors, center_size_factors)
    down.target <- .replace(down.target, down_target)
    down.prop <- .replace(down.prop, down_prop)
    pseudo.count <- .replace(pseudo.count, pseudo_count)

    if (!is.null(subset.row) && !normalize.all) {
        x <- x[subset.row,,drop=FALSE]
        subset.row <- NULL
    }

    if (nrow(x)==0L) {
        return(x + 0) # coerce to numeric.
    }

    size.factors <- .get_default_sizes(x, size.factors, center.size.factors, BPPARAM=BPPARAM, subset.row=subset.row)

    if (length(size.factors)!=ncol(x)) {
        stop("number of size factors does not equal 'ncol(x)'")
    }
    if (!all(is.finite(size.factors) & size.factors > 0)) {
        stop("size factors should be positive")
    }

    if (downsample) {
        down.out <- .downsample_counts(x, size.factors, down.prop=down.prop, down.target=down.target)
        x <- down.out$x
        size.factors <- down.out$size.factors
    }

    transform <- .choose_transform(log, match.arg(transform))
    .internal_transformer(x, size.factors, transform, pseudo.count) 
})

.get_default_sizes <- function(x, size.factors, center.size.factors, ...) {
    if (is.null(size.factors)) {
        size.factors <- librarySizeFactors(x, ...)
    }
    .center.size.factors(size.factors, center.size.factors)
}

.center.size.factors <- function(size.factors, center.size.factors) {
    if (center.size.factors) {
        size.factors <- size.factors/mean(size.factors)
    }
    size.factors
}

#' @importFrom stats quantile
.downsample_counts <- function(x, size.factors, down.prop, down.target) {
    if (is.null(down.target)) {
        down.target <- quantile(size.factors, probs=down.prop)
    }
    down_rate <- pmin(1, down.target/size.factors)
    x <- downsampleMatrix(x, down_rate, bycol=TRUE)
    size.factors <- size.factors * down_rate/down.target
    list(x=x, size.factors=size.factors)
}

.choose_transform <- function(log, transform) {
    if (!is.null(log)) {
        if (log) {
            transform <- "log"
        } else {
            transform <- "none"
        }
    }
    transform
}

###########################################

#' @export
#' @rdname normalizeCounts
#' @importFrom SummarizedExperiment assay 
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
setMethod("normalizeCounts", "SummarizedExperiment", function(x, ..., assay.type="counts", exprs_values=NULL) {
    assay.type <- .replace(assay.type, exprs_values)
    normalizeCounts(assay(x, assay.type), ...)
})

#' @export
#' @rdname normalizeCounts
#' @importFrom BiocGenerics sizeFactors
#' @importClassesFrom SingleCellExperiment SingleCellExperiment
setMethod("normalizeCounts", "SingleCellExperiment", function(x, size.factors=sizeFactors(x), ...) {
    callNextMethod(x=x, size.factors=size.factors, ...)
})

###########################################

setGeneric(".internal_transformer", function(x, ...) standardGeneric(".internal_transformer"))

#' @importFrom Matrix t
setMethod(".internal_transformer", "ANY", function(x, size.factors, transform, pseudo.count) {
    # Needs a double-transpose. Oh well.
    norm_exprs <- t(t(x) / size.factors)
    if (transform=="log") {
        if (pseudo.count==1) {
            # Preserve DelayedMatrix sparsity, if possible.
            norm_exprs <- log1p(norm_exprs)/log(2)
        } else {
            norm_exprs <- log2(norm_exprs + pseudo.count)
        }
    } else if (transform=="asinh") {
        norm_exprs <- asinh(norm_exprs)/log(2)
    }

    norm_exprs
})

#' @importClassesFrom Matrix dgTMatrix
setMethod(".internal_transformer", "dgCMatrix", function(x, size.factors, transform, pseudo.count) {
    if (transform=="log" && pseudo.count!=1) {
        callNextMethod()
    } else if (!.check_methods(transform, pseudo.count, class(x), "dgCMatrix")) {
        callNextMethod()
    } else {
        .transform_sparse(x, rep(size.factors, diff(x@p)), transform)
    }
})

#' @importClassesFrom Matrix dgTMatrix
setMethod(".internal_transformer", "dgTMatrix", function(x, size.factors, transform, pseudo.count) {
    if (transform=="log" && pseudo.count!=1) {
        callNextMethod()
    } else if (!.check_methods(transform, pseudo.count, class(x), "dgTMatrix")) {
        callNextMethod()
    } else {
        .transform_sparse(x, size.factors[x@j+1L], transform)
    }
})

.transform_sparse <- function(x, expanded_sf, transform) {
    x@x <- x@x/expanded_sf

    if (transform=="log") {
        x@x <- log1p(x@x)/log(2)
    } else if (transform=="asinh") {
        x@x <- asinh(x@x)/log(2)
    }

    x
}

.check_methods <- function(transform, pseudo.count, actual, expected) 
# We want to check whether it is legal to apply this operation to dgCMatrices,
# as the various methods may have side-effects that are omitted by direct
# slot manipulation. We do so by verifying that the methods are the same as 
# the base methods (and thus direct slot modification is equivalent).
{
    if (actual != expected) {
        to.check <- c("/", "t")
        if (transform=="log") {
            if (pseudo.count==1) {
                to.check <- c(to.check, "log1p")
            } else {
                to.check <- c(to.check, "log", "+")
            }
        } else if (transform=="asinh") {
            to.check <- c(to.check, "asinh")
        }

        for (generic in to.check) {
            left <- selectMethod(generic, actual)
            left <- as(left, "function")
            right <- selectMethod(generic, expected)
            right <- as(right, "function")
            if (!identical(left, right)) {
                return(FALSE)
            }
        }
    }
    TRUE
}
LTLA/scuttle documentation built on Oct. 28, 2024, 9:45 a.m.