tests/testthat/test-chunking.R

# This checks that the chunked sampling is self-consistent.
# library(DelayedRandomArray); library(testthat); source("test-chunking.R")

test_that("recovery of a single chunk makes sense", {
    seeds <- list(c(12345L, 12345L))
    arr <- DelayedRandomArray:::sample_standard_uniform(c(10, 10), c(10, 10), seeds, list(1:10, 1:10))

    # Looks pretty random to me:
    expect_identical(dim(arr), c(10L, 10L))
    expect_false(any(arr==0 | arr==1))
    expect_true(is.unsorted(as.vector(arr)))
    expect_identical(anyDuplicated(arr), 0L)

    # Reproducible:
    arr2 <- DelayedRandomArray:::sample_standard_uniform(c(10, 10), c(10, 10), seeds, list(1:10, 1:10))
    expect_identical(arr2, arr)

    arr2 <- DelayedRandomArray:::sample_standard_uniform(c(10, 10), c(10, 10), seeds, list(NULL, NULL))
    expect_identical(arr2, arr)

    # Works with different chunk sizes:
    arr3 <- DelayedRandomArray:::sample_standard_uniform(c(10, 5), c(10, 5), seeds, list(1:10, 1:5))
    expect_identical(arr[,1:5], arr3)
    
    arr3 <- DelayedRandomArray:::sample_standard_uniform(c(10, 5), c(10, 5), seeds, list(NULL, NULL))
    expect_identical(arr[,1:5], arr3)

    # Works with arrays.
    arr4 <- DelayedRandomArray:::sample_standard_uniform(c(10, 5, 2), c(10, 5, 2), seeds, list(1:10, 1:5, 1:2))
    expect_identical(dim(arr4), c(10L, 5L, 2L))

    arr4 <- DelayedRandomArray:::sample_standard_uniform(c(10, 5, 2), c(10, 5, 2), seeds, list(NULL, NULL, NULL))
    expect_identical(dim(arr4), c(10L, 5L, 2L))
    expect_identical(arr4[,,1], arr3)

    subarr <- arr4[,,2]
    expect_false(any(subarr==0 | subarr==1))
    expect_true(is.unsorted(as.vector(subarr)))
    expect_identical(anyDuplicated(subarr), 0L)
})

FULL_COMPARE <- function(dim, chunkdim) {
    nchunks <- ceiling(dim/chunkdim)
    seeds <- dqrng::generateSeedVectors(prod(nchunks))
    full <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, lapply(dim, seq_len))
    expect_identical(dim(full), as.integer(dim))

    identifier <- c(1, cumprod(head(nchunks, -1)))
    for (i in seq_along(seeds)) {
        chunk.dex <- integer(length(dim))
        curid <- (i-1)
        for (j in rev(seq_along(dim))) {
            chunk.dex[j] <- as.integer(curid / identifier[j])
            curid <- curid %% identifier[j]
        }

        everything <- subsets <- list()
        for (j in seq_along(dim)) {
            idx <- seq_len(chunkdim[j])
            full.idx <- idx + chunk.dex[j] * chunkdim[j]
            keep <- full.idx <= dim[j]
            subsets[[j]] <- full.idx[keep]
            everything[[j]] <- idx[keep]
        }

        current.chunk <- DelayedRandomArray:::sample_standard_uniform(chunkdim, chunkdim, seeds[i], everything, stream_start = i-1)
        extracted <- do.call("[", c(list(full), subsets, list(drop=FALSE)))
        expect_identical(extracted, current.chunk)

        # Same result with NULL indices.
        current.chunk <- DelayedRandomArray:::sample_standard_uniform(chunkdim, chunkdim, seeds[i], everything, stream_start = i-1)
        extracted <- do.call("[", c(list(full), subsets, list(drop=FALSE)))
        expect_identical(extracted, current.chunk)

        full <- do.call("[<-", c(list(full), subsets, list(value=0)))
    }

    expect_true(all(full==0))
}

test_that("full extraction works with multiple chunks in a grid", {
    # 2D cases.
    FULL_COMPARE(c(100, 50), c(20, 10))
    FULL_COMPARE(c(100, 50), c(20, 25))
    FULL_COMPARE(c(50, 100), c(20, 25))
    FULL_COMPARE(c(100, 50), c(9, 8))

    # 3D cases.
    FULL_COMPARE(c(100, 50, 20), c(20, 10, 5))
    FULL_COMPARE(c(100, 50, 20), c(20, 25, 2))
    FULL_COMPARE(c(100, 50, 20), c(9, 8, 7))
    FULL_COMPARE(c(50, 100, 20), c(9, 8, 7))

    # 1D cases.
    FULL_COMPARE(c(100), c(20))
    FULL_COMPARE(c(100), c(9))
})

test_that("extraction of a subarray works as expected", {
    # In the 2D case.
    dim <- c(100, 50)
    chunkdim <- c(24, 8)
    nseeds <- prod(ceiling(dim/chunkdim))
    seeds <- dqrng::generateSeedVectors(nseeds)
    full <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, list(NULL, NULL))

    for (indices in list(
        list(2:30, NULL),
        list(NULL, 2:30),
        list(5:50, 2:30),
        list(2:5*10, NULL),
        list(NULL, 2:5*10),
        list(c(1,10,51,99), NULL),
        list(NULL, c(1,10,49)),
        list(20:40*2, 10:20*2)
    )) {
        sub <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, indices)
        alt <- extract_array(full, indices)
        expect_identical(sub, alt)
    }

    # In the 3D case.
    dim <- c(100, 50, 80)
    chunkdim <- c(30, 10, 15)
    nseeds <- prod(ceiling(dim/chunkdim))
    seeds <- dqrng::generateSeedVectors(nseeds)
    full <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, list(NULL, NULL, NULL))

    for (indices in list(
        list(2:30, NULL, NULL),
        list(NULL, 2:30, NULL),
        list(5:50, NULL, 2:30),
        list(NULL, 2:5*10, NULL),
        list(NULL, NULL, 2:5*10),
        list(2:50, c(1,10,49), NULL),
        list(2:50, NULL, c(1,10,49)),
        list(20:40*2, 10:20*2, 3:50)
    )) {
        sub <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, indices)
        alt <- extract_array(full, indices)
        expect_identical(sub, alt)
    }

    # In the 1D case.
    dim <- c(100)
    chunkdim <- c(8)
    nseeds <- prod(ceiling(dim/chunkdim))
    seeds <- dqrng::generateSeedVectors(nseeds)
    full <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, list(NULL))

    for (indices in list(
        list(2:30),
        list(c(1,10,49)),
        list(20:40*2)
    )) {
        sub <- DelayedRandomArray:::sample_standard_uniform(dim, chunkdim, seeds, indices)
        alt <- extract_array(full, indices)
        expect_identical(sub, alt)
    }
})

test_that("handles edge cases", {
    full <- DelayedRandomArray:::sample_standard_uniform(c(0, 0, 1), c(0, 0, 1), list(), list(NULL, NULL, NULL))
    expect_identical(dim(full), c(0L, 0L, 1L))

    full <- DelayedRandomArray:::sample_standard_uniform(c(20, 0, 1), c(20, 0, 1), list(), list(NULL, NULL, NULL))
    expect_identical(dim(full), c(20L, 0L, 1L))
})
LTLA/DelayedRandomArray documentation built on July 7, 2024, 12:39 p.m.