# library(testthat); library(BiocNeighbors); source("setup.R"); source("test-findKNN.R")
set.seed(999999)
test_that("findKNN works with basic options", {
Y <- matrix(rnorm(10000), ncol=20)
out <- findKNN(Y, k=8)
ref <- refFindKNN(Y, k=8)
expect_equal(out, ref)
out <- findKNN(Y, k=8, BNPARAM=KmknnParam(distance="Manhattan"))
ref <- refFindKNN(Y, k=8, type="manhattan")
expect_equal(out, ref)
out <- findKNN(Y, k=8, BNPARAM=KmknnParam(distance="Cosine"))
Y1 <- Y/sqrt(rowSums(Y^2))
ref <- findKNN(Y1, k=8)
expect_equal(out, ref)
})
test_that("findKNN works in parallel", {
Y <- matrix(rnorm(10000), ncol=20)
out <- findKNN(Y, k=8)
pout <- findKNN(Y, k=8, num.threads=2)
expect_identical(out, pout)
pout <- findKNN(Y, k=8, BPPARAM=BiocParallel::SnowParam(2))
expect_identical(out, pout)
})
test_that("findKNN works with subsets", {
Y <- matrix(rnorm(10000), ncol=20)
full <- findKNN(Y, k=8)
sout <- findKNN(Y, subset=1:10, k=8)
out <- full
out$index <- out$index[1:10,]
out$distance <- out$distance[1:10,]
expect_identical(out, sout)
expect_error(findKNN(Y, k=8, subset=100000), "out-of-range")
expect_warning(out <- findKNN(Y[0,,drop=FALSE], k=8), "capped")
expect_identical(ncol(out$index), 0L)
expect_identical(ncol(out$distance), 0L)
# Works with non-integer options.
keep <- rbinom(nrow(Y), 1, 0.5) == 1
sout <- findKNN(Y, subset=keep, k=8)
out <- full
out$index <- out$index[keep,]
out$distance <- out$distance[keep,]
expect_identical(out, sout)
Z <- Y
rownames(Z) <- seq_len(nrow(Z))
keep <- sample(rownames(Z), nrow(Z) / 2)
sout <- findKNN(Z, subset=keep, k=8)
out <- full
out$index <- out$index[as.integer(keep),]
out$distance <- out$distance[as.integer(keep),]
expect_identical(out, sout)
})
test_that("findKNN works with variable k", {
Y <- matrix(rnorm(10000), ncol=20)
k <- rep(c(4, 10), length.out=nrow(Y))
out <- findKNN(Y, k=k)
keep <- k == 4
ref <- findKNN(Y, k=4)
expect_identical(do.call(rbind, out$index[keep]), ref$index[keep,])
expect_identical(do.call(rbind, out$distance[keep]), ref$distance[keep,])
keep <- k == 10
ref <- findKNN(Y, k=10)
expect_identical(do.call(rbind, out$index[keep]), ref$index[keep,])
expect_identical(do.call(rbind, out$distance[keep]), ref$distance[keep,])
# The AsIs forced variable works.
out <- findKNN(Y, k=I(10), subset=1)
ref <- findKNN(Y, k=10, subset=1)
expect_identical(out$index[[1]], ref$index[1,])
expect_identical(out$distance[[1]], ref$distance[1,])
expect_error(findKNN(Y, k=1:10), "must be equal")
})
test_that("findKNN works with prebuilt indices", {
Y <- matrix(rnorm(10000), ncol=20)
built <- buildIndex(Y, k=8)
out <- findKNN(Y, k=8)
preout <- findKNN(built, k=8)
expect_identical(out, preout)
# Unaffected by BNPARAM settings at this point.
preout <- findKNN(built, k=8, BNPARAM=AnnoyParam())
expect_identical(out, preout)
# Throws an error for deserialized prebuilt indices.
tmp <- tempfile(fileext=".rds")
saveRDS(built, tmp)
expect_error(findKNN(readRDS(tmp), k=1), "null pointer")
})
test_that("findKNN works with variable outputs", {
Y <- matrix(rnorm(10000), ncol=20)
out <- findKNN(Y, k=8)
iout <- findKNN(Y, k=8, get.distance=FALSE)
expect_null(iout$distance)
expect_identical(iout$index, out$index)
dout <- findKNN(Y, k=8, get.index=FALSE)
expect_null(dout$index)
expect_identical(dout$distance, out$distance)
tout <- findKNN(Y, k=8, get.index="transposed", get.distance="transposed")
expect_identical(t(tout$distance), out$distance)
expect_identical(t(tout$index), out$index)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.