context("equality between DF and SE functions")
set.seed(9997)
data(msquant)
se <- .dfToSE(msquant,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "replicate", "subject_id"),
colExtraText = "Neutral_Operator_Dif_Pos_",
separator = "_")
metadata(se) <- list(test1 = "test",
test2 = matrix(c(1, 2, 3, 4, 5, 6), nrow = 3),
test3 = data.frame(test1 = c(1, 2, 3),
test2 = c(4, 5, 6)),
test4 = TRUE)
## Run msTidy with SE and data frame
tidySE <- .msTidy(se, missingValue = 1)
tidyDF <- .msTidy(msquant,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "replicate", "subject_id"),
colExtraText = "Neutral_Operator_Dif_Pos_",
separator = "_",
missingValue = 1)
## Run msSummarize with SE and data frame
summarizedDF <- msSummarize(msquant,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "replicate",
"subject_id"),
cvMax = 0.50,
minPropPresent = 1/3,
returnSummaryDetails = TRUE,
colExtraText = "Neutral_Operator_Dif_Pos_",
separator = "_",
missingValue = 1)
summarizedSE <- msSummarize(se,
cvMax = 0.50,
minPropPresent = 1/3,
missingValue = 1,
returnSummaryDetails = TRUE)
## Run msFilter with SE and data frame
filteredDF <- msFilter(summarizedDF$data,
filterPercent = 0.8,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE)
filteredSE <- msFilter(summarizedSE,
filterPercent = .8)
## Run msImpute with DF and SE
hmImputedDF <- msImpute(filteredDF, imputeMethod = "halfmin",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE,
missingValue = 0)
bpcaImputedDF <- msImpute(filteredDF, imputeMethod = "bpca",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE,
missingValue = 0)
knnImputedDF <- msImpute(filteredDF, imputeMethod = "knn",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE,
missingValue = 0)
set.seed(123)
rfImputedDF <- msImpute(filteredDF, imputeMethod = "rf",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE,
missingValue = 0)
hmImputedSE <- msImpute(filteredSE, imputeMethod = "halfmin",
returnToSE = TRUE,
missingValue = 0)
bpcaImputedSE <- msImpute(filteredSE, imputeMethod = "bpca",
returnToSE = TRUE,
missingValue = 0)
knnImputedSE <- msImpute(filteredSE, imputeMethod = "knn",
returnToSE = TRUE,
missingValue = 0)
set.seed(123)
rfImputedSE <- msImpute(filteredSE, imputeMethod = "rf",
returnToSE = TRUE,
missingValue = 0)
## Run msNormalize with DF and SE
svaNormalizedDF <- msNormalize(hmImputedDF,
normalizeMethod = "SVA",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
covariatesOfInterest = c("spike"),
separator = "_",
returnToSE = FALSE)
combatNormalizedDF <- msNormalize(hmImputedDF, normalizeMethod = "ComBat",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
covariatesOfInterest = c("spike"),
separator = "_",
returnToSE = FALSE)
quantNormalizedDF <- msNormalize(hmImputedDF, normalizeMethod = "quantile",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE)
medianNormalizedDF <- msNormalize(hmImputedDF, normalizeMethod = "median",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
returnToSE = FALSE)
quantCombatNormalizedDF <- msNormalize(hmImputedDF,
normalizeMethod = "quantile + ComBat",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch",
"subject_id"),
covariatesOfInterest = c("spike"),
separator = "_",
returnToSE = FALSE)
medCombatNormalizedDF <- msNormalize(hmImputedDF,
normalizeMethod = "median + ComBat",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch",
"subject_id"),
covariatesOfInterest = c("spike"),
separator = "_",
returnToSE = FALSE)
crmnNormalizedDF <- msNormalize(hmImputedDF,
normalizeMethod = "CRMN",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
covariatesOfInterest = c("spike"),
separator = "_",
returnToSE = FALSE)
ruvNormalizedDF <- msNormalize(hmImputedDF,
normalizeMethod = "RUV",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
covariatesOfInterest = c("spike"),
controls = NULL, nControl = 5, kRUV = 5,
separator = "_",
returnToSE = FALSE)
svaNormalizedSE <- msNormalize(hmImputedSE,
normalizeMethod = "SVA",
covariatesOfInterest = c("spike"))
combatNormalizedSE <- msNormalize(hmImputedSE, normalizeMethod = "ComBat",
covariatesOfInterest = c("spike"),
returnToSE = TRUE)
quantileNormalizedSE <- msNormalize(hmImputedSE, normalizeMethod = "quantile",
returnToSE = TRUE)
medNormalizedSE <- msNormalize(hmImputedSE, normalizeMethod = "median",
returnToSE = TRUE)
quantCombatNormalizedSE <- msNormalize(hmImputedSE,
normalizeMethod = "quantile + ComBat",
covariatesOfInterest = c("spike"),
returnToSE = TRUE)
medCombatNormalizedSE <- msNormalize(hmImputedSE,
normalizeMethod = "median + ComBat",
covariatesOfInterest = c("spike"),
returnToSE = TRUE)
crmnNormalizedSE <- msNormalize(hmImputedSE,
normalizeMethod = "CRMN",
covariatesOfInterest = c("spike"),
returnToSE = TRUE)
ruvNormalizedSE <- msNormalize(hmImputedSE,
normalizeMethod = "RUV",
controls = NULL, nControl = 5, kRUV = 5,
separator = "_",
returnToSE = TRUE)
## Check that results are equal
## msTidy()
test_that("Check .msTidy()", {
expect_true(all(tidySE == tidyDF | is.na(tidySE == tidyDF)))
})
## msSummarize()
test_that("Check msSummarize()", {
expect_true(identical(assay(summarizedSE),
as.matrix(summarizedDF$data[, 3:20])))
expect_true(all(all(rowData(summarizedSE) ==
as.data.frame(summarizedDF$data[, 1:2]))))
expect_true(identical(S4Vectors::metadata(summarizedSE)$summaryDetails,
summarizedDF$summaryDetails))
})
## msFilter()
test_that("Check msFilter()", {
expect_true(identical(assay(filteredSE),
as.matrix(filteredDF[, 3:20])))
expect_true(all(all(rowData(filteredSE) ==
as.data.frame(filteredDF[, 1:2]))))
expect_true(all(rownames(colData(filteredSE)) ==
colnames(filteredDF[3:20])))
})
## msImpute()
test_that("Check msImpute(hm)", {
expect_true(identical(assay(hmImputedSE),
as.matrix(hmImputedDF[, 3:20])))
expect_true(all(all(rowData(hmImputedSE) ==
as.data.frame(hmImputedDF[, 1:2]))))
expect_true(all(rownames(colData(hmImputedSE)) ==
colnames(hmImputedDF[3:20])))
})
test_that("Check msImpute(bpca)", {
expect_true(identical(assay(bpcaImputedSE),
as.matrix(bpcaImputedDF[, 3:20])))
expect_true(all(all(rowData(bpcaImputedSE) ==
as.data.frame(bpcaImputedDF[, 1:2]))))
expect_true(all(rownames(colData(bpcaImputedSE)) ==
colnames(bpcaImputedDF[3:20])))
})
test_that("Check msImpute(knn)", {
expect_true(identical(assay(knnImputedSE),
as.matrix(knnImputedDF[, 3:20])))
expect_true(all(all(rowData(knnImputedSE) ==
as.data.frame(knnImputedDF[, 1:2]))))
expect_true(all(rownames(colData(knnImputedSE)) ==
colnames(knnImputedDF[3:20])))
})
test_that("Check msImpute(rf)", {
expect_true(identical(assay(rfImputedSE),
as.matrix(rfImputedDF[, 3:20])))
expect_true(all(all(rowData(rfImputedSE) ==
as.data.frame(rfImputedDF[, 1:2]))))
expect_true(all(rownames(colData(rfImputedSE)) ==
colnames(rfImputedDF[3:20])))
})
## msNormalize()
test_that("Check msNormalize(sva)", {
expect_true(identical(assay(svaNormalizedSE),
as.matrix(svaNormalizedDF[, 3:20])))
expect_true(all(all(rowData(svaNormalizedSE) ==
as.data.frame(svaNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(svaNormalizedSE)) ==
colnames(svaNormalizedDF[3:20])))
})
test_that("Check msNormalize(combat)", {
expect_true(identical(assay(combatNormalizedSE),
as.matrix(combatNormalizedDF[, 3:20])))
expect_true(all(all(rowData(combatNormalizedSE) ==
as.data.frame(combatNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(combatNormalizedSE)) ==
colnames(combatNormalizedDF[3:20])))
})
test_that("Check msNormalize(quantile)", {
expect_true(identical(assay(quantileNormalizedSE),
as.matrix(quantNormalizedDF[, 3:20])))
expect_true(all(all(rowData(quantileNormalizedSE) ==
as.data.frame(quantNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(quantileNormalizedSE)) ==
colnames(quantNormalizedDF[3:20])))
})
test_that("Check msNormalize(median)", {
expect_true(identical(assay(medNormalizedSE),
as.matrix(medianNormalizedDF[, 3:20])))
expect_true(all(all(rowData(medNormalizedSE) ==
as.data.frame(medianNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(medNormalizedSE)) ==
colnames(medianNormalizedDF[3:20])))
})
test_that("Check msNormalize(quantile + ComBat)", {
expect_true(identical(assay(quantCombatNormalizedSE),
as.matrix(quantCombatNormalizedDF[, 3:20])))
expect_true(all(all(rowData(quantCombatNormalizedSE) ==
as.data.frame(quantCombatNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(quantCombatNormalizedSE)) ==
colnames(quantCombatNormalizedDF[3:20])))
})
test_that("Check msNormalize(median + ComBat)", {
expect_true(identical(assay(medCombatNormalizedSE),
as.matrix(medCombatNormalizedDF[, 3:20])))
expect_true(all(all(rowData(medCombatNormalizedSE) ==
as.data.frame(medCombatNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(medCombatNormalizedSE)) ==
colnames(medCombatNormalizedDF[3:20])))
})
test_that("Check msNormalize(crmn)", {
expect_true(all(assay(crmnNormalizedSE) ==
as.matrix(crmnNormalizedDF[, 3:20])))
expect_true(all(all(rowData(crmnNormalizedSE) ==
as.data.frame(crmnNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(crmnNormalizedSE)) ==
colnames(crmnNormalizedDF[3:20])))
})
test_that("Check msNormalize(ruv)", {
expect_true(identical(assay(ruvNormalizedSE),
as.matrix(ruvNormalizedDF[, 3:20])))
expect_true(all(all(rowData(ruvNormalizedSE) ==
as.data.frame(ruvNormalizedDF[, 1:2]))))
expect_true(all(rownames(colData(ruvNormalizedSE)) ==
colnames(ruvNormalizedDF[3:20])))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.