if(getRversion() >= "3.1.0") utils::globalVariables(c("myNorm","myLoad","probe.features.epic","probe.features"))
champ.DMP <- function(beta = myNorm,
pheno = myLoad$pd$Sample_Group,
adjPVal = 0.05,
adjust.method = "BH",
compare.group = NULL,
arraytype = "450K")
{
message("[===========================]")
message("[<<<<< ChAMP.DMP START >>>>>]")
message("-----------------------------")
if(is.null(pheno) | length(unique(pheno))<=1)
{
stop("pheno parameter is invalid. Please check the input, pheno MUST contain at least two phenotypes.")
}else
{
message("<< Your pheno information contains following groups. >>")
sapply(unique(pheno),function(x) message("<",x,">:",sum(pheno==x)," samples."))
message("[The power of statistics analysis on groups contain very few samples may not strong.]")
}
if(is.null(compare.group))
{
message("You did not assign compare groups. The first two groups: <",unique(pheno)[1],"> and <",unique(pheno)[2],">, will be compared automatically.")
compare.group <- unique(pheno)[1:2]
}else if(sum(compare.group %in% unique(pheno))==2)
{
message("As you assigned, champ.DMP will compare ",compare.group[1]," and ",compare.group[2],".")
}else
{
message("Seems you did not assign correst compare groups. The first two groups: <",unique(pheno)[1],"> and <",unique(pheno)[2],">, will be compared automatically.")
compare.group <- unique(pheno)[1:2]
}
p <- pheno[which(pheno %in% compare.group)]
beta <- beta[,which(pheno %in% compare.group)]
design <- model.matrix( ~ 0 + p)
contrast.matrix <- makeContrasts(contrasts=paste(colnames(design)[2:1],collapse="-"), levels=colnames(design))
message("\n<< Contrast Matrix >>")
print(contrast.matrix)
message("\n<< All beta, pheno and model are prepared successfully. >>")
fit <- lmFit(beta, design)
fit2 <- contrasts.fit(fit,contrast.matrix)
tryCatch(fit3 <- eBayes(fit2),
warning=function(w)
{
stop("limma failed, No sample variance.\n")
})
DMP <- topTable(fit3,coef=1,number=nrow(beta),adjust.method=adjust.method,p.value=adjPVal)
message("You have found ",sum(DMP$adj.P.Val <= adjPVal), " significant MVPs with a ",adjust.method," adjusted P-value below ", adjPVal,".")
message("\n<< Calculate DMP successfully. >>")
if(arraytype == "EPIC") data(probe.features.epic) else data(probe.features)
com.idx <- intersect(rownames(DMP),rownames(probe.features))
avg <- cbind(rowMeans(beta[com.idx,which(p==compare.group[1])]),rowMeans(beta[com.idx,which(p==compare.group[2])]))
avg <- cbind(avg,avg[,2]-avg[,1])
colnames(avg) <- c(paste(compare.group,"AVG",sep="_"),"deltaBeta")
DMP <- data.frame(DMP[com.idx,],avg,probe.features[com.idx,])
message("[<<<<<< ChAMP.DMP END >>>>>>]")
message("[===========================]")
message("[You may want to process DMP.GUI() or champ.GSEA() next.]\n")
return(DMP)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.