R/champ.refbase.R

Defines functions champ.refbase

Documented in champ.refbase

if(getRversion() >= "3.1.0") utils::globalVariables(c("myNorm","CellTypeMeans27K","CellTypeMeans450K"))

champ.refbase <- function(beta=myNorm,
                          arraytype="450K")
{
  message("[===========================]")
  message("[<<< ChAMP.REFBASE START >>>]")
  message("-----------------------------")
  
  ### projectWBC function to do reference based cell proportions detecton.
  projectWBC <- function(Y, coefWBC, contrastWBC=NULL, nonnegative=TRUE, lessThanOne=FALSE)
  {
    if(is.null(contrastWBC)) Xmat = coefWBC
    else Xmat = coefWBC %*% t(contrastWBC)
    
    nCol = dim(Xmat)[2]
    nSubj = dim(Y)[2]
    
    mixCoef = matrix(0, nSubj, nCol)
    rownames(mixCoef) = colnames(Y)
    colnames(mixCoef) = colnames(Xmat)
    
    if(nonnegative)
    {
      #library(quadprog)
      if(lessThanOne)
      {
        Amat = cbind(rep(-1,nCol), diag(nCol))
        b0vec = c(-1,rep(0,nCol))
      }
      else{
        Amat = diag(nCol)
        b0vec = rep(0,nCol)
      }
      for(i in 1:nSubj){
        obs = which(!is.na(Y[,i]))
        Dmat = t(Xmat[obs,])%*%Xmat[obs,]
        mixCoef[i,] = solve.QP(Dmat, t(Xmat[obs,])%*%Y[obs,i], Amat, b0vec)$sol
      }
    }
    else{
      for(i in 1:nSubj){
        obs = which(!is.na(Y[,i]))
        Dmat = t(Xmat[obs,])%*%Xmat[obs,]
        mixCoef[i,] = solve(Dmat, t(Xmat[obs,]) %*% Y[obs,i])
      }
    }
    return(mixCoef)
  }
  message("<< Load projectWBC function success. >>")
  
  if(arraytype %in% c("EPIC", "EPICv2")) {
    data("probe.features.epicv2")
  } else if(arraytype == "EPICv1") {
    data("probe.features.epicv1")
  } else if(arraytype == "450K") { 
    data("probe.features")
  } else (
    stop("arraytype must be `EPICv2`, `EPICv1`, `450K`")
  )
  probe.features <- probe.features[rownames(beta),]
  dedup <- !duplicated(probe.features$Name)
  
  beta_dedup <- beta[dedup, ]
  rownames(beta_dedup) <- probe.features[dedup, "Name"]
  
  if(arraytype == "27K")
  {
    data(CellTypeMeans27K)     # From Accomando et al. (27K)
    DMRs27K <- intersect(rownames(CellTypeMeans27K), rownames(beta_dedup))
    cellFrac <- projectWBC(beta_dedup[DMRs27K,], 
                           CellTypeMeans27K[DMRs27K,], 
                           lessThanOne=TRUE)
  }else
  {
    data(CellTypeMeans450K)    # From Reinius et al. (450K)
    DMRs450K <- intersect(rownames(CellTypeMeans450K), rownames(beta_dedup))
    cellFrac <- projectWBC(beta_dedup[DMRs450K,],
                           CellTypeMeans450K[DMRs450K,],
                           lessThanOne=TRUE)
  }
  message("Mean value for each estimated Cell Proportion:")
  print(colMeans(cellFrac))
  message(names(which.min(colMeans(cellFrac)))," has smallest cell proportion, all other cell proportions will be corrected by linear regression method.")
  
  lm.o <- lm(t(beta) ~ cellFrac[,-1*which.min(colMeans(cellFrac))])
  tmp.m <- t(lm.o$res)+rowMeans(beta);
  
  tmp.m[tmp.m <= 0] <- min(tmp.m[which(tmp.m > 0)])
  tmp.m[tmp.m >= 1] <- max(tmp.m[which(tmp.m < 1)])
  
  message("All cell proportion influence except the one with least cell proportion get corrected.\n")
  
  message("[<<<< ChAMP.REFBASE END >>>>]")
  message("[===========================]")
  return(list(CorrectedBeta=tmp.m,CellFraction=cellFrac))
}
JoshuaTian/ChAMP documentation built on Feb. 21, 2023, 4:57 p.m.