#' Dimension reduction for high dimension data
#'
#' Apply dimension reduction on the cytof expression data,
#' with method \code{pca}, \code{tsne}, \code{umap} or \code{isomap}.
#'
#' @param data Input expression data matrix.
#' @param markers Selected markers for dimension reduction, either marker names/descriptions or marker IDs.
#' @param method Method chosen for dimensition reduction, must be one of \code{isomap}, \code{pca} , or \code{tsne}.
#' @param out_dim The dimensionality of the output.
#' @param umap_neighbor This parameter controls how UMAP balances local versus global structure in the data.
#' @param umap_min_dist Controls how tightly UMAP is allowed to pack points together.
#' @param tsneSeed Set a seed if you want reproducible t-SNE results.
#' @param distMethod Method for distance calcualtion, default is "euclidean", other choices like "manhattan", "cosine", "rankcor"....
#' @param isomap_k Number of shortest dissimilarities retained for a point, parameter for \code{isomap} method.
#' @param isomap_ndim Number of axes in metric scaling, parameter for \code{isomap} method.
#' @param isomapFragmentOK What to do if dissimilarity matrix is fragmented, parameter for \code{isomap} method.
#' @param ... Other parameters passed to the method, check \code{\link{Rtsne}}, \code{\link{umap}}, \code{\link{isomap}}.
#' @return A matrix of the dimension reduced data, with colnames method_ID, and rownames same as the input data.
#'
#' @importFrom vegan vegdist spantree isomap
#' @importFrom Rtsne Rtsne
#' @import umap
#' @importFrom utils compareVersion packageVersion
#' @import stats reticulate
#' @export
#' @examples
#' data(iris)
#' in_data <- iris[, 1:4]
#' markers <- colnames(in_data[, 1:4])
#' out_data <- cytof_dimReduction(in_data, markers = markers, method = "tsne")
#' @note Currently, \code{diffusionmap} will not work with R 3.4.0, due to an issue with the latest CRAN release of its dependency \code{\link{igraph}}
#' If this is the case, consider manually updating \code{\link{igraph}} using;
#' \code{install.packages("https://github.com/igraph/rigraph/releases/download/v1.1.0/igraph_1.1.0.zip", repos=NULL, method="libcurl")
cytof_dimReduction <- function(data,
markers = NULL,
method = c("umap", "tsne", "pca", "isomap", "NULL"),
distMethod = "euclidean",
out_dim = 2,
umap_neighbor = 30,
umap_min_dist = 0.3,
tsneSeed = 42,
isomap_k = 5,
isomap_ndim = NULL,
isomapFragmentOK = TRUE,
...) {
data <- as.matrix(data)
rnames <- row.names(data)
##markers
if (!(is.null(markers))) {
if(is.character(markers)){
right_marker <- markers %in% colnames(data)
if(!all(right_marker)){
stop("\n Selected marker(s) is/are not in the input fcs files \n please check your selected marker(s)! \n")
}else{
marker_id <- markers
}
}else{
stop("Sorry, input markers cannot be recognized!")
}
}else{
## NULL default to all
marker_id <- colnames(data)
}
marker_filtered_data <- data[, marker_id]
method <- match.arg(method)
if(method == "NULL"){
return(NULL)
}
switch(method,
umap = {
#if (!py_module_available(module = "umap")) {
# stop("Cannot find UMAP, please install through pip (e.g. pip install umap-learn).")
#}
message(" Running UMAP...with seed", tsneSeed)
#umap_import <- import(module = "umap", delay_load = TRUE)
umap <- umap::umap(marker_filtered_data, n_neighbors = as.integer(x = umap_neighbor)
, n_components = as.integer(x = out_dim)
, metric = distMethod
, min_dist = umap_min_dist)
#mapped <- umap$fit_transform(as.matrix(x = marker_filtered_data))
mapped <- umap$layout
}
,tsne={
message(" Running t-SNE...with seed", tsneSeed)
if(is.numeric(tsneSeed))
set.seed(tsneSeed) # Set a seed if you want reproducible results
tsne_out <- Rtsne(marker_filtered_data, initial_dims = ncol(marker_filtered_data),
dims = 2,
check_duplicates = FALSE,
pca = TRUE, ...)
mapped <- tsne_out$Y
},
pca={
message(" Running PCA...")
mapped <- prcomp(marker_filtered_data, scale = TRUE)$x
},
#diffusionmap={
# message(" Running Diffusion Map...\n")
#versiontest <- compareVersion(as.character(packageVersion("igraph")), "1.1.0")
# if(versiontest == 0 || versiontest == 1){
# message("igraph up to date!")
# }else{
# stop("igraph not at least version 1.1.0! Stopping...")
# }
# ord <- tryCatch({
# DiffusionMap(marker_filtered_data, distance = distMethod, ...)
# }, error=function(cond) {
# message("Run Diffusion Map failed")
# message("Here's the error message:")
# message(cond)
# return(NULL)
# })
#if(is.null(ord)){
# mapped <- NULL
# }else{
# if(nrow(ord@eigenvectors) != nrow(marker_filtered_data) || any(!complete.cases(ord@eigenvectors))){
# message("Run Diffusion Map failed!")
# return(NULL)
# }
# mapped <- ord@eigenvectors
# mapped <- apply(mapped, 2, function(x) {
## replace inf value to max finite value
# x[is.infinite(x)] <- max(x[is.finite(x)])
# x
# })
# }
#},
isomap={
message(" Running ISOMAP...")
if (is.null(isomap_ndim))
isomap_ndim <- ncol(marker_filtered_data)
ord <- tryCatch({
dis <- vegdist(marker_filtered_data, method = distMethod)
isomap(dis, ndim = isomap_ndim, k = isomap_k, fragmentedOK = isomapFragmentOK, ...)
}, error=function(cond) {
message("Run isomap failed")
message("Here's the error message:")
message(cond)
return(NULL)
})
if(is.null(ord)){
mapped <- NULL
}else{
if(nrow(ord$points) != nrow(marker_filtered_data) || any(!complete.cases(ord$points))){
message("Run ISOMAP failed!")
return(NULL)
}
mapped <- ord$points
}
})
## extract out_dim dimensions, organize output
if(!is.null(mapped)){
if(ncol(mapped) < out_dim){
out_dim <- ncol(mapped)
message("Run ",method," for dimensional reduction, out dimension coerced to ",out_dim)
}
mapped <- mapped[ ,c(1:out_dim)]
colnames(mapped) <- paste(method, c(1:out_dim), sep = "_")
rownames(mapped) <- rnames
}
message(" DONE\n")
return(mapped)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.