#' Estimate esco simulation parameters
#'
#' Estimate simulation parameters for the esco simulation from a real
#' dataset. See the individual estimation functions for more details on how this
#' is done.
#'
#' @param counts either a counts matrix or a SingleCellExperiment object
#' containing count data to estimate parameters from.
#' @param dirname a tring of directory name to indicate where to save the results
#' @param group whether the data is believed to be of discrete cell groups or not,
#' if yes, the corresponding cellinfo indicating the
#' cell group labels need to be input as well
#' @param cellinfo a vector of length n, where n is the number of cells.
#' Each entries is the group identity of a cell.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @seealso
#' \code{\link{escoEstMean}}, \code{\link{escoEstLib}},
#' \code{\link{escoEstOutlier}}, \code{\link{escoEstBCV}},
#' \code{\link{escoEstDropout}}, \code{\link{escoEstDE}},
#' \code{\link{escoEstGroupMean}}, \code{\link{escoEstGroupLib}},
#' \code{\link{escoEstGroupOutlier}}
#'
#' @return \code{escoParams} object containing the estimated parameters.
#'
#' @examples
#' # Load example data
#' data = matrix(rpois(2000*40,2),2000,40)
#' params <- escoEstimate(data)
#' params
#' @rdname escoEstimate
#' @importFrom splatter setParams setParam getParams getParam
#' @export
escoEstimate <- function(counts, dirname, group = FALSE,
cellinfo = NULL, params = newescoParams()) {
UseMethod("escoEstimate")
}
#' @rdname escoEstimate
#' @importFrom splatter setParams setParam getParams getParam
#' @export
#'
escoEstimate.SingleCellExperiment <- function(counts, dirname,
group = FALSE, cellinfo = NULL,
params = newescoParams()) {
counts <- BiocGenerics::counts(counts)
escoEstimate(counts, params)
}
#' @rdname escoEstimate
#' @importFrom stats median quantile
#' @importFrom SC3 get_marker_genes
#' @importFrom splatter setParams setParam getParams getParam
#' @export
escoEstimate.matrix <- function(counts, dirname, group = FALSE,
cellinfo = NULL, params = newescoParams()) {
checkmate::assertClass(params, "escoParams")
if(!group){
# Normalise for library size and remove all zero genes
lib.sizes <- colSums(counts)
lib.medhigh <- median(lib.sizes[which(lib.sizes>quantile(lib.sizes, 0.1))])
lib.med <- median(lib.sizes)
norm.counts <- t(t(counts) / lib.sizes * lib.med)
norm.counts <- norm.counts[rowSums(norm.counts > 0) > 1, ]
# norm.countshigh <- t(t(counts) / lib.sizes * lib.medhigh)
# norm.countshigh <- norm.countshigh[rowSums(norm.countshigh > 0) > 1, ]
params <- escoEstDropout(norm.counts, params)
params <- escoEstLib(counts, norm.counts, params)
params <- escoEstMean(norm.counts, counts, params)
params <- escoEstOutlier(norm.counts, params)
params <- escoEstBCV(counts, norm.counts, params)
params <- setParams(params, nGenes = nrow(counts),
nCells = ncol(counts))
params <- setParams(params, dropout.type = "zeroinflate", dropout.cort = FALSE)
return(params)
}
# if the cells are of discrete cell groups, the estimated differently
else{
lib.sizes <- colSums(counts)
lib.med <- mean(lib.sizes)
norm.counts <- t(t(counts) / lib.sizes * lib.med)
saveRDS(norm.counts, paste0(dirname, "normcounts.rds"))
libadjust = colSums(counts)/colSums(norm.counts)
ngroups = length(cellinfo)
group.prob = as.vector(table(cellinfo))/ncol(counts)
group.prob[1] = 1 - sum(group.prob[-1])
params <- setParams(params, group.prob = group.prob)
params <- escoEstGroupLib(counts = counts, params = params)
markers = get_marker_genes(norm.counts, cellinfo)
markers$genes = rownames(counts)
save(markers, file = paste0(dirname, "markers.rdata"))
degenes = markers[which(markers$auroc > 0.7), ]
deall.prob <- nrow(degenes)/nrow(counts)
de.prob <- as.vector(table(degenes$clusts))/nrow(degenes)
params <- setParams(params, de.prob = de.prob, de.downProb = 0)
housegenes <- markers$genes[which(markers$auroc < 0.2)]
housegenes <- housegenes[which(rowMeans(norm.counts[housegenes,])>
quantile(rowMeans(norm.counts), 0.8))]
if(length(housegenes) > 0){
house.prob = length(housegenes)/nrow(counts)
}
else{
house.prob = 0.05
}
degenes.name = as.character(degenes$genes)
nondegenes.name = setdiff(rownames(counts), as.character(degenes$genes))
nonDE.normcounts = norm.counts[nondegenes.name,]
nonDE.counts = counts[nondegenes.name,]
DE.normcounts = norm.counts[degenes.name,]
DE.counts = counts[degenes.name,]
params <- escoEstGroupMean(nonDE.normcounts,
DE.normcounts, degenes, cellinfo, params)
params <- escoEstBCV(counts, norm.counts, params, cellinfo)
params <- escoEstGroupOutlier(nonDE.normcounts,
DE.normcounts, degenes, cellinfo, params)
de <- escoEstDE(nonDE.normcounts,
DE.normcounts, degenes, cellinfo, params)
de.facLoc = de[[1]]
de.facScale = de[[2]]
de.rank = de[[3]]
de.facrank = de[[4]]
params <- setParams(params, de.facLoc = de.facLoc,
de.facScale = de.facScale,
de.rank = de.rank,
de.facrank = de.facrank,
nGroups = length(de.rank))
params <- escoEstDropout(counts, params)
params <- setParams(params, dropout.type = "zeroinflate")
params <- setParams(params, nGenes = nrow(counts),
nCells = ncol(counts),
deall.prob = deall.prob,
house.prob = house.prob)
return(params)
}
}
#' Estimate esco library size parameters
#'
#' The Shapiro-Wilks test is used to determine if the library sizes are
#' normally distributed. If so a normal distribution is fitted to the library
#' sizes, if not (most cases) a log-normal distribution is fitted and the
#' estimated parameters are added to the params object. See
#' \code{\link[fitdistrplus]{fitdist}} for details on the fitting.
#'
#' @param counts counts matrix to estimate parameters from.
#' @param norm.counts library size normalised counts matrix.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @return \code{escoParams} object with estimated values.
#' @rdname escoEstLib
#' @importFrom stats shapiro.test
#' @importFrom splatter setParams setParam getParams getParam
escoEstLib <- function(counts, norm.counts, params) {
lib.sizes <- colSums(counts)
# drop.mid <- getParam(params, "dropout.mid")
# drop.shape <- getParam(params, "dropout.shape")
# #means <- winsorize(means, q = 0.01)
# means = rowMeans(norm.counts)
# means = means[which(means!=0)]
# lmeans <- log(means)
# drop.prob = logistic(lmeans, x0 = drop.mid, k = drop.shape)
# #keep.prob = (1 - drop.prob)
# keep.prob = (1 - drop.prob)/(1-dpois(0, lambda = means))
# keep.prob[keep.prob<0] = 1
# keep.prob[is.na(keep.prob)] = 1
# keep.prob[keep.prob>1] = 1
# truecounts = counts/keep.prob
# lib.sizes = colSums(truecounts)
#lib.sizes <- lib.sizes[which(lib.sizes>quantile(lib.sizes, 0.1))]
if (length(lib.sizes) > 5000) {
message("NOTE: More than 5000 cells provided. ",
"5000 sampled library sizes will be used to test normality.")
lib.sizes.sampled <- sample(lib.sizes, 5000, replace = FALSE)
} else {
lib.sizes.sampled <- lib.sizes
}
norm.test <- shapiro.test(lib.sizes.sampled)
lib.norm <- norm.test$p.value > 0.2
if (lib.norm) {
fit <- fitdistrplus::fitdist(lib.sizes, "norm")
lib.loc <- unname(fit$estimate["mean"])
lib.scale <- unname(fit$estimate["sd"])
message("NOTE: Library sizes have been found to be normally ",
"distributed instead of log-normal. You may want to check ",
"this is correct.")
} else {
fit <- fitdistrplus::fitdist(lib.sizes, "lnorm")
lib.loc <- unname(fit$estimate["meanlog"])
lib.scale <- unname(fit$estimate["sdlog"])
}
#
# if(gamma){
# fit <- fitdistrplus::fitdist(lib.sizes, "gamma", method = "mge",
# gof = "CvM")
# if (fit$convergence > 0) {
# warning("Fitting means using the Goodness of Fit method failed, ",
# "using the Method of Moments instead")
# fit <- fitdistrplus::fitdist(means, "gamma", method = "mme")
# }
# lib.loc = unname(fit$estimate["shape"])
# lib.scale = unname(fit$estimate["rate"])
# }
params <- setParams(params, lib.loc = lib.loc, lib.scale = lib.scale,
lib.norm = lib.norm, lib.dens = density(lib.sizes))
return(params)
}
#' Estimate esco group mean parameters
#'
#' Estimate rate and shape parameters for the gamma distribution used to
#' simulate gene expression means.
#'
#' @param normcounts library size normalised counts matrix.
#' @param counts counts matrix to estimate parameters from.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @details
#' Parameter for the gamma distribution are estimated by fitting the mean
#' normalised counts using \code{\link[fitdistrplus]{fitdist}}. The 'maximum
#' goodness-of-fit estimation' method is used to minimise the Cramer-von Mises
#' distance. This can fail in some situations, in which case the 'method of
#' moments estimation' method is used instead. Prior to fitting the means are
#' winsorized by setting the top and bottom 10 percent of values to the 10th
#' and 90th percentiles.
#' @import DescTools
#' @importFrom splatter setParams setParam getParams getParam
#' @rdname escoEstMean
#' @return \code{escoParams} object with estimated values.
escoEstMean <- function(normcounts, counts, params) {
means <- rowMeans(normcounts)
means <- means[means != 0]
# drop.mid <- getParam(params, "dropout.mid")[1]
# drop.shape <- getParam(params, "dropout.shape")
# lmeans <- log(means)
means <- winsorize(means, q = 0.1)
# drop.prob = logistic(lmeans, x0 = drop.mid, k = drop.shape)
# #keep.prob = (1 - drop.prob)
# keep.prob = (1 - drop.prob)/(1-dpois(0, lambda = means))
# keep.prob[keep.prob<0] = 0
# keep.prob[is.na(keep.prob)] = 0
# keep.prob[keep.prob>1] = 1
# means = means/keep.prob
lmeans <- log(means)
#means <- means[which(means>quantile(means, prob = 0.1))]
fit <- fitdistrplus::fitdist(means, "gamma", method = "mge",
gof = "CvM")
if (fit$convergence > 0) {
warning("Fitting means using the Goodness of Fit method failed, ",
"using the Method of Moments instead")
fit <- fitdistrplus::fitdist(means, "gamma", method = "mme")
}
params <- setParams(params, mean.shape = unname(fit$estimate["shape"]),
mean.rate = unname(fit$estimate["rate"]),
mean.dens = density(lmeans))
return(params)
}
#' Estimate esco expression outlier parameters for a single cell group
#'
#' Parameters are estimated by comparing means of individual genes to the
#' median mean expression level.
#'
#' @param norm.counts library size normalised counts matrix.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @details
#' Expression outlier genes are detected using the Median Absolute Deviation
#' (MAD) from median method. If the log2 mean expression of a gene is greater
#' than two MADs above the median log2 mean expression it is designated as an
#' outlier. The proportion of outlier genes is used to estimate the outlier
#' probability. Factors for each outlier gene are calculated by dividing mean
#' expression by the median mean expression. A log-normal distribution is then
#' fitted to these factors in order to estimate the outlier factor location and
#' scale parameters using \code{\link[fitdistrplus]{fitdist}}.
#' @rdname escoEstOutlier
#' @return \code{escoParams} object with estimated values.
#' @importFrom splatter setParams setParam getParams getParam
escoEstOutlier <- function(norm.counts, params) {
means <- rowMeans(norm.counts)
lmeans <- log(means)
med <- median(lmeans)
mad <- mad(lmeans)
bound <- med + 2*mad
outs <- which(lmeans > bound)
prob <- length(outs) / nrow(norm.counts)
params <- setParams(params, out.prob = prob)
if (length(outs) > 1) {
facs <- means[outs] / median(means)
fit <- fitdistrplus::fitdist(facs, "lnorm")
params <- setParams(params,
out.facLoc = unname(fit$estimate["meanlog"]),
out.facScale = unname(fit$estimate["sdlog"]))
}
return(params)
}
#' Estimate esco Biological Coefficient of Variation parameters
#'
#' Parameters are estimated using the \code{\link[edgeR]{estimateDisp}} function
#' in the \code{edgeR} package.
#'
#' @param counts counts matrix to estimate parameters from.
#' @param norm.counts normalized counts matrix to estimate parameters from.
#' @param params \code{escoParams} object to store estimated values in.
#' @param cellinfo info about the identity of each cell in the cell structure.
#' If cellinfo is not null, then BCV is
#' estiamted adjusted to the cell structures
#' @details
#' The \code{\link[edgeR]{estimateDisp}} function is used to estimate the common
#' dispersion and prior degrees of freedom. See
#' \code{\link[edgeR]{estimateDisp}} for details. When estimating parameters on
#' simulated data we found a broadly linear relationship between the true
#' underlying common dispersion and the \code{edgR} estimate, therefore we
#' apply a small correction, \code{disp = 0.1 + 0.25 * edgeR.disp}.
#' @rdname escoEstBCV
#' @return \code{escoParams} object with estimated values.
#' @importFrom splatter setParams setParam getParams getParam
escoEstBCV <- function(counts, norm.counts, params, cellinfo = NULL){
# if(is.null(cellinfo)){
# means = rowMeans(norm.counts)
# drop.mid <- getParam(params, "dropout.mid")[1]
# drop.shape <- getParam(params, "dropout.shape")
# #means <- winsorize(means, q = 0.01)
# lmeans <- log(means)
# drop.prob = logistic(lmeans, x0 = drop.mid, k = drop.shape)
# keep.prob = (1 - drop.prob)
# #keep.prob = (1 - drop.prob)/(1-dpois(0, lambda = means))
# keep.prob[keep.prob<0] = 0
# keep.prob[is.na(keep.prob)] = 0
# keep.prob[keep.prob>1] = 1
# counts = counts/keep.prob
# }
if(is.null(cellinfo)){
design <- matrix(1, ncol(counts), 1)
disps <- edgeR::estimateDisp(counts, design = design)
params <- setParams(params,
bcv.common = 0.1 + 0.25 * disps$common.dispersion,
bcv.df = disps$prior.df)
}
else{
disps <- edgeR::estimateDisp(counts, group = cellinfo)
params <- setParams(params,
bcv.common = 0.1 + 0.25 * disps$common.dispersion,
bcv.df = disps$prior.df)
}
return(params)
}
#' Estimate esco dropout parameters
#'
#' Estimate the midpoint and shape parameters
#' for the logistic function used
#' when simulating dropout.
#'
#' @param norm.counts library size normalised counts matrix.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @details
#' Logistic function parameters are estimated
#' by fitting a logistic function
#' to the relationship between log2 mean gene
#' expression and the proportion of
#' zeros in each gene. See \code{\link[stats]{nls}}
#' for details of fitting.
#' Note this is done on the experiment level.
#'
#' @return \code{escoParams} object with estimated values.
#' @rdname escoEstDropout
#' @importFrom stats dnbinom nls
#' @importFrom splatter setParams setParam getParams getParam
escoEstDropout <- function(norm.counts, params) {
means <- rowMeans(norm.counts)
x <- log(means)
obs.zeros <- rowSums(norm.counts == 0)
y <- obs.zeros / ncol(norm.counts)
df <- data.frame(x, y)
x_approx_mid <- median(x[which(y > 0.0001 & y < 0.9999)])
fit <- nls(y ~ logistic(x, x0 = x0, k = k), data = df,
start = list(x0 = 0, k = -1))
mid <- summary(fit)$coefficients["x0", "Estimate"]
shape <- summary(fit)$coefficients["k", "Estimate"]
params <- setParams(params, dropout.mid = mid, dropout.shape = shape)
return(params)
}
#' Estimate esco mean parameters for discrete cell groups
#'
#' Estimate rate and shape parameters for the gamma distribution used to
#' simulate gene expression means for each cell group.
#'
#' @param nonDE.normcounts library size normalised
#' counts matrix for nonDE genes.
#' @param DE.normcounts library size normalised counts matrix for DE genes.
#' @param degenes a dataframe of two columns: "genes" and "clust",
#' where "genes" contains the position of a degenes,
#' and "clust" contains the
#' corresponding cell group the degenes marks.
#' @param cellinfo a vector of length n, where n is the number of cells.
#' Each entries is the group identity of a cell.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @details
#' Parameter for the gamma distribution are estimated by fitting the mean
#' normalised counts using \code{\link[fitdistrplus]{fitdist}}. Particularly,
#' the entries corresponds to DE genes in the cell group it marks
#' are not considered in the fitting. The 'maximum goodness-of-fit
#' estimation' method is used to minimise the Cramer-von Mises
#' distance. This can fail in some situations, in which case the 'method of
#' moments estimation' method is used instead. Prior to fitting the means are
#' winsorized by setting the top and bottom 10 percent of values to the 10th
#' and 90th percentiles.
#' @rdname escoEstGroupMean
#' @return \code{escoParams} object with estimated values.
#' @importFrom splatter setParams setParam getParams getParam
escoEstGroupMean <- function(nonDE.normcounts, DE.normcounts, degenes, cellinfo, params) {
means <- rowMeans(nonDE.normcounts)
for(idx in seq_len(unique(degenes$clusts))){
marker = degenes$genes[which(degenes$clusts==idx)]
cells = colnames(DE.normcounts)[which(cellinfo!=levels(cellinfo)[idx])]
means = c(means, rowMeans(DE.normcounts[marker,cells]))
}
means <- means[means != 0]
means <- winsorize(means, q = 0.01)
lmeans <- log(means)
fit <- fitdistrplus::fitdist(means, "gamma", method = "mge",
gof = "CvM")
if (fit$convergence > 0) {
warning("Fitting means using the Goodness of Fit method failed, ",
"using the Method of Moments instead")
fit <- fitdistrplus::fitdist(means, "gamma", method = "mme")
}
params <- setParams(params, mean.shape = unname(fit$estimate["shape"]),
mean.rate = unname(fit$estimate["rate"]), mean.dens = density(lmeans))
return(params)
}
#' Estimate esco library size parameters for discrete cell groups
#'
#' The Shapiro-Wilks test is used to determine if the library sizes are
#' normally distributed. If so a normal distribution is fitted to the library
#' sizes, if not (most cases) a log-normal distribution is fitted and the
#' estimated parameters are added to the params object.
#' Specifically, for a cell group, the fitting
#' process uses only the cell samples within this cell group. See
#' \code{\link[fitdistrplus]{fitdist}} for details on the fitting.
#'
#' @param counts counts matrix to estimate parameters from.
#' @param cellinfo a vector of length n, where n is the number of cells.
#' Each entries is the group identity of a cell.
#' @param params \code{escoParams} object to store estimated values in.
#'
#' @return \code{escoParams} object with estimated values.
#' @rdname escoEstGroupLib
#' @importFrom stats shapiro.test
#' @importFrom splatter setParams setParam getParams getParam
escoEstGroupLib <- function(counts, cellinfo = NULL, params) {
if(!is.null(cellinfo)){
lib.norm = c()
lib.loc = c()
lib.scale = c()
for(idx in seq_len(length(unique(cellinfo)))){
cells = colnames(counts)[which(cellinfo==levels(cellinfo)[idx])]
lib.sizes <- colSums(counts[,cells])
if (length(lib.sizes) > 5000) {
message("NOTE: More than 5000 cells provided. ",
"5000 sampled library sizes will be used to test normality.")
lib.sizes.sampled <- sample(lib.sizes, 5000, replace = FALSE)
} else {
lib.sizes.sampled <- lib.sizes
}
norm.test <- shapiro.test(lib.sizes.sampled)
lib.norm[idx] <- norm.test$p.value > 0.2
if (lib.norm[idx]) {
fit <- fitdistrplus::fitdist(lib.sizes, "norm")
lib.loc[idx] <- unname(fit$estimate["mean"])
lib.scale[idx] <- unname(fit$estimate["sd"])
message("NOTE: Library sizes have been found to be normally ",
"distributed instead of log-normal. You may want to check ",
"this is correct.")
} else {
fit <- fitdistrplus::fitdist(lib.sizes, "lnorm")
lib.loc[idx] <- unname(fit$estimate["meanlog"])
lib.scale[idx] <- unname(fit$estimate["sdlog"])
}
}
}
else{
lib.sizes <- colSums(counts)
if (length(lib.sizes) > 5000) {
message("NOTE: More than 5000 cells provided. ",
"5000 sampled library sizes will be used to test normality.")
lib.sizes.sampled <- sample(lib.sizes, 5000, replace = FALSE)
} else {
lib.sizes.sampled <- lib.sizes
}
norm.test <- shapiro.test(lib.sizes.sampled)
lib.norm <- norm.test$p.value > 0.2
if (lib.norm) {
fit <- fitdistrplus::fitdist(lib.sizes, "norm")
lib.loc <- unname(fit$estimate["mean"])
lib.scale <- unname(fit$estimate["sd"])
message("NOTE: Library sizes have been found to be normally ",
"distributed instead of log-normal. You may want to check ",
"this is correct.")
} else {
fit <- fitdistrplus::fitdist(lib.sizes, "lnorm")
lib.loc <- unname(fit$estimate["meanlog"])
lib.scale <- unname(fit$estimate["sdlog"])
}
}
params <- setParams(params, lib.loc = lib.loc, lib.scale = lib.scale,
lib.norm = lib.norm)
return(params)
}
#' Estimate esco expression DE parameters for discrete cell groups
#'
#' Parameters are estimated by comparing means of individual genes to the
#' median mean expression level.
#'
#' @param nonDE.normcounts library size normalised counts matrix for nonDE genes.
#' @param DE.normcounts library size normalised counts matrix for DE genes.
#' @param degenes a dataframe of two columns: "genes" and "clust",
#' where "genes" contains the position of a degenes, and "clust" contains the
#' corresponding cell group the degenes marks.
#' @param cellinfo a vector of length n, where n is the number of cells.
#' Each entries is the group identity of a cell.
#' @param params \code{escoParams} object to store estimated values in.
#' @rdname escoEstDE
#' @details
#' Expression DE factor are detected using the Median Absolute Deviation
#' (MAD) from median method. If the log2 mean expression of a gene is greater
#' than two MADs above the median log2 mean expression it is designated as an
#' outlier. The proportion of outlier genes is used to estimate the outlier
#' probability. Factors for each outlier gene are calculated by dividing mean
#' expression by the median mean expression. A log-normal distribution is then
#' fitted to these factors in order to estimate the outlier factor location and
#' scale parameters using \code{\link[fitdistrplus]{fitdist}}.
#'
#' @return \code{escoParams} object with estimated values.
#' @importFrom splatter setParams setParam getParams getParam
escoEstDE <- function(nonDE.normcounts, DE.normcounts, degenes, cellinfo, params) {
de.rank = list()
de.facrank = list()
means <- rowMeans(nonDE.normcounts)
for(idx in seq_len(length(unique(degenes$clusts)))){
marker = degenes$genes[which(degenes$clusts==idx)]
cells = colnames(DE.normcounts)[which(cellinfo!=levels(cellinfo)[idx])]
means = c(means, rowMeans(DE.normcounts[marker,cells]))
}
ordall = sort(means, index.return=TRUE)$ix
de.facLoc = c()
de.facScale = c()
start = nrow(nonDE.normcounts)+1
for(idx in seq_len(length(unique(degenes$clusts)))){
marker = as.character(degenes$genes[which(degenes$clusts==idx)])
nonDEcells = colnames(DE.normcounts)[which(cellinfo!=levels(cellinfo)[idx])]
nonDEmeans = rowMeans(DE.normcounts[marker, nonDEcells])
DEcells = colnames(DE.normcounts)[which(cellinfo==levels(cellinfo)[idx])]
Demeans = rowMeans(DE.normcounts[marker, DEcells])
de.rank[[idx]] = ordall[start: (start + length(marker)-1)]
de.facrank[[idx]] = sort(Demeans / nonDEmeans, index.return = TRUE)$ix
start = start + length(marker)
med <- mean(nonDEmeans)
facs <- Demeans / med
fit <- fitdistrplus::fitdist(facs, "lnorm")
de.facLoc[idx] = unname(fit$estimate["meanlog"])
de.facScale[idx] = unname(fit$estimate["sdlog"])
}
return(list(de.facLoc = de.facLoc,
de.facScale = de.facScale,
de.rank = de.rank,
de.facrank = de.facrank))
}
#' Estimate esco Group expression outlier parameters for discrete cell groups
#'
#' Parameters are estimated by comparing means of individual genes to the
#' median mean expression level.
#'
#' @param nonDE.normcounts library size normalised counts matrix for non DE genes.
#' @param DE.normcounts library size normalised counts matrix for DE genes.
#' @param degenes a dataframe of two columns: "genes" and "clust",
#' where "genes" contains the position of a degenes, and "clust" contains the
#' corresponding cell group the degenes marks.
#' @param cellinfo a vector of length n, where n is the number of cells.
#' Each entries is the group identity of a cell.
#' @param params \code{escoParams} object to store estimated values in.
#' @rdname escoEstGroupOutlier
#' @details
#' Expression outlier genes are detected using the Median Absolute Deviation
#' (MAD) from median method. If the log2 mean expression of a gene is greater
#' than two MADs above the median log2 mean expression it is designated as an
#' outlier. Specifically, the meadian log2 mean expression for a degene is computed
#' with the cell samples that does not belongs to the cell group it marked.
#' The proportion of outlier genes is used to estimate the outlier
#' probability. Factors for each outlier gene are calculated by dividing mean
#' expression by the median mean expression. A log-normal distribution is then
#' fitted to these factors in order to estimate the outlier factor location and
#' scale parameters using \code{\link[fitdistrplus]{fitdist}}.
#'
#' @return \code{escoParams} object with estimated values.
escoEstGroupOutlier <- function(nonDE.normcounts, DE.normcounts,
degenes, cellinfo, params) {
means <- rowMeans(nonDE.normcounts)
for(idx in seq_len(length(unique(degenes$clusts)))){
marker = degenes$genes[which(degenes$clusts==idx)]
cells = colnames(DE.normcounts)[which(cellinfo!=levels(cellinfo)[idx])]
means = c(means, rowMeans(DE.normcounts[marker,cells]))
}
#means <- rowMeans(norm.counts)
lmeans <- log(means)
med <- median(lmeans)
mad <- mad(lmeans)
bound <- med + 2 * mad
outs <- which(lmeans > bound)
prob <- length(outs) / (nrow(nonDE.normcounts) + nrow(DE.normcounts))
params <- setParams(params, out.prob = prob)
if (length(outs) > 1) {
facs <- means[outs] / median(means)
fit <- fitdistrplus::fitdist(facs, "lnorm")
params <- setParams(params,
out.facLoc = unname(fit$estimate["meanlog"]),
out.facScale = unname(fit$estimate["sdlog"]))
}
return(params)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.