R/plot_pca.R

Defines functions plot_pca

Documented in plot_pca

#' Highchart version of plotPCA in DESeq2
#'
#' Highchart version of sample PCA plot
#'
#' @param object a matrix, ExpressionSet or DESeqTransform object
#' @param intgroup a character vector of names from colData(object) or
#' pData(object) for ExpressionSets for grouping, default 'trt'
#' @param tooltip a character vector of names in colData(object) for tooltip
#' display, default is id column
#' @param label a name in colData(object) for ggplot labels
#' @param ntop number of top variable genes to use for principal components
#' @param relevel reorder intgroup levels, default is alphabetical
#' @param pc a vector of components to plot, default 1st and 2nd
#' @param scale option to scale variables in prcomp, default FALSE
#' @param ggplot plot ggplot version, default FALSE
#' @param \dots additional options passed to \code{hc_chart}
#'
#' @return A highchart
#'
#' @author Chris Stubben
#'
#' @examples
#' plot_pca(pasilla$rlog, "condition", tooltip=c("file", "type"))
#' plot_pca(pasilla$rlog, "condition", label="file", ggplot=TRUE)
#' @export

plot_pca <- function(object, intgroup="trt", tooltip, label, ntop = 500, relevel,
 pc=c(1,2), scale=FALSE, ggplot=FALSE, ...){
   if(length(pc) != 2) stop( "pc should be a vector of length 2")
   if( class(object)[1] == "matrix"){
      colMetadata <- data.frame(id= colnames(object), trt="sample")
       group <- colMetadata$trt  # or no key?
      n  <- apply(object, 1, stats::var)
      x <- utils::head(object[ order(n, decreasing=TRUE),], ntop)
   }else if( class(object)[1] == "ExpressionSet"){
       colMetadata <- Biobase::pData(object)
       if(!all(intgroup %in% names( colMetadata))){
           stop("intgroup should match columns of pData(object)")
       }
       group <- apply(as.data.frame(colMetadata[, intgroup, drop=FALSE]), 1,
                  paste, collapse=": ")
       n <- apply(Biobase::exprs(object), 1, stats::var)
       x <- utils::head(
                Biobase::exprs(object)[order(n, decreasing=TRUE),], ntop)
   }else{
      colMetadata <- SummarizedExperiment::colData(object)
      if(!all(intgroup %in% names( colMetadata))){
          stop("intgroup should match columns of colData(object)")
      }
      group <- apply(as.data.frame(colMetadata[, intgroup, drop=FALSE]), 1,
                 paste, collapse=": ")
      n <- apply(SummarizedExperiment::assay(object), 1, stats::var)
      x <- utils::head(
          SummarizedExperiment::assay(object)[order(n, decreasing=TRUE),], ntop)
   }
   pca <- stats::prcomp(t(x), scale.=scale)
   percentVar <- round(pca$sdev^2/sum(pca$sdev^2) * 100, 1)
   if(!missing(relevel)){
      if(all( unique(group) %in% relevel)){
          group <- factor(group, levels = relevel)
      }else{
         message("Levels do not match group names, skipping relevel")
      }
   }
   ## colMetadata names may change without check.names=FALSE
   d <- data.frame( PC1 = pca$x[, pc[1]], PC2 = pca$x[, pc[2]], INTGRP = group,
         COLNAMES = colnames(object), colMetadata, check.names = FALSE )
   if(ggplot){
      p <- ggplot2::ggplot(data=d, ggplot2::aes(x=PC1, y=PC2, color=INTGRP,
          shape=INTGRP)) +  ggplot2::geom_point(size=2) +
       ggplot2::xlab(paste0("PC", pc[1], ": ", percentVar[pc[1]],"% variance")) +
       ggplot2::ylab(paste0("PC", pc[2], ": ", percentVar[pc[2]],"% variance")) +
       ggplot2::theme_bw() +
       ggplot2::theme(legend.title = ggplot2::element_blank(),
           legend.key = ggplot2::element_blank())
       if(missing(label)){
		   p
	   }else{
		   if(!label %in% names(colMetadata) ) stop("name is missing from colData(object)")
        dotlabels <- colMetadata[[label]]
        p + ggrepel::geom_text_repel(ggplot2::aes(label=dotlabels), cex=3, box.padding=.2, show.legend=FALSE)
	   }
   }else{
      # if tooltip is missing use column names
      if(missing(tooltip)){
         tooltipJS <- "this.point.COLNAMES"
      }else{
         if(!all(tooltip %in% names(colMetadata))){
            stop("tooltip should match columns of colData(object)")
         }
         ## no colons or dots in JS
         colnames(d) <- gsub("[ :;.]", "_", colnames(d))
         tooltip <- gsub("[ :;.]", "_", tooltip)

         # if tooltip = ID, patient  then tooltipJS =
         #  'ID: ' + this.point.ID + '<br>patient: ' + this.point.patient
         tooltipJS <-  paste0("'", paste( tooltip, ": ' + this.point.", tooltip,
                        sep="", collapse = " + '<br>"))
      }
      highcharter::highchart() %>%
      highcharter::hc_add_series(d , type = "scatter",
          mapping = highcharter::hcaes(x= PC1, y= PC2, group= INTGRP) ) %>%
      highcharter::hc_tooltip(formatter = htmlwidgets::JS(
          paste0("function(){ return (", tooltipJS, ")}"))) %>%
      highcharter::hc_xAxis(title = list(text = paste0("PC",  pc[1], ": ",
          percentVar[ pc[1] ], "% variance")), gridLineWidth=1, tickLength=0,
          startOnTick="true", endOnTick="true") %>%
      highcharter::hc_yAxis(title = list(text = paste0("PC", pc[2], ": ",
          percentVar[ pc[2] ], "% variance"))) %>%
	  highcharter::hc_plotOptions( series=list(states=list(inactive=list(opacity=1))))   %>%
      highcharter::hc_chart(zoomType = "xy", ...)  %>%
      highcharter::hc_exporting(enabled=TRUE, filename = "pca")
   }
}
HuntsmanCancerInstitute/hciR documentation built on Dec. 10, 2024, 12:22 p.m.