R/da_two_groups.R

Defines functions calc_ratio calc_sparse_diff_mean create_contingency_matrix calc_sparse_p calc_twosample_ts_single_feature calc_twosample_ts calc_permute_ts bootstrap_diff_mean_prop_single calc_bootstrap_ci calc_p_large_sample calc_permute_p run_white_test run_t_test run_test_two_groups

Documented in run_test_two_groups

#' @title Statistical test between two groups
#'
#' @description
#' Differential expression analysis for two groups.
#'
#' @param ps a [`phyloseq::phyloseq-class`] object
#' @param group character, the variable to set the group
#' @param taxa_rank character to specify taxonomic rank to perform
#'   differential analysis on. Should be one of
#'   `phyloseq::rank_names(phyloseq)`, or "all" means to summarize the taxa by
#'   the top taxa ranks (`summarize_taxa(ps, level = rank_names(ps)[1])`), or
#'   "none" means perform differential analysis on the original taxa
#'   (`taxa_names(phyloseq)`, e.g., OTU or ASV).
#' @param transform character, the methods used to transform the microbial
#'   abundance. See [`transform_abundances()`] for more details. The
#'   options include:
#'   * "identity", return the original data without any transformation
#'     (default).
#'   * "log10", the transformation is `log10(object)`, and if the data contains
#'     zeros the transformation is `log10(1 + object)`.
#'   * "log10p", the transformation is `log10(1 + object)`.
#'   * "SquareRoot", the transformation is `Square Root`.
#'   * "CubicRoot", the transformation is `Cubic Root`.
#'   * "logit", the transformation is `Zero-inflated Logit Transformation`
#' (Does not work well for microbiome data).
#' @param norm the methods used to normalize the microbial abundance data. See
#'   [`normalize()`] for more details.
#'   Options include:
#'   * "none": do not normalize.
#'   * "rarefy": random subsampling counts to the smallest library size in the
#'     data set.
#'   * "TSS": total sum scaling, also referred to as "relative abundance", the
#'     abundances were normalized by dividing the corresponding sample library
#'     size.
#'   * "TMM": trimmed mean of m-values. First, a sample is chosen as reference.
#'     The scaling factor is then derived using a weighted trimmed mean over the
#'     differences of the log-transformed gene-count fold-change between the
#'     sample and the reference.
#'   * "RLE", relative log expression, RLE uses a pseudo-reference calculated
#'     using the geometric mean of the gene-specific abundances over all
#'     samples. The scaling factors are then calculated as the median of the
#'     gene counts ratios between the samples and the reference.
#'   * "CSS": cumulative sum scaling, calculates scaling factors as the
#'     cumulative sum of gene abundances up to a data-derived threshold.
#'   * "CLR": centered log-ratio normalization.
#'   * "CPM": pre-sample normalization of the sum of the values to 1e+06.
#' @param norm_para arguments passed to specific normalization methods
#' @param method test method, must be one of "welch.test", "t.test" or
#' "white.test"
#' @param p_adjust method for multiple test correction, default `none`,
#' for more details see [stats::p.adjust].
#' @param pvalue_cutoff numeric, p value cutoff, default 0.05
#' @param diff_mean_cutoff,ratio_cutoff cutoff of different means and ratios,
#'   default `NULL` which means no effect size filter.
#' @param conf_level numeric, confidence level of interval.
#' @param nperm integer, number of permutations for white non parametric t test
#'  estimation
#' @param ... extra arguments passed to [t.test()] or [fisher.test()]
#' @importFrom phyloseq rank_names tax_glom
#' @importFrom dplyr select everything filter
#' @export
#' @author Yang Cao
#' @return a [`microbiomeMarker-class`] object.
#' @seealso [`run_test_multiple_groups()`],[`run_simple_stat`]
#' @examples
#' data(enterotypes_arumugam)
#' mm_welch <- run_test_two_groups(
#'     enterotypes_arumugam,
#'     group = "Gender",
#'     method = "welch.test"
#' )
#' mm_welch
run_test_two_groups <- function(ps,
    group,
    taxa_rank = "all",
    transform = c("identity", "log10", "log10p",
                  "SquareRoot", "CubicRoot", "logit"),
    norm = "TSS",
    norm_para = list(),
    method = c("welch.test", "t.test", "white.test"),
    p_adjust = c(
        "none", "fdr", "bonferroni", "holm",
        "hochberg", "hommel", "BH", "BY"
    ),
    pvalue_cutoff = 0.05,
    diff_mean_cutoff = NULL,
    ratio_cutoff = NULL,
    conf_level = 0.95,
    nperm = 1000,
    ...) {
    stopifnot(inherits(ps, "phyloseq"))
    ps <- check_rank_names(ps)

    # ps_rank <- rank_names(ps)
    # if ("Picrust_trait" %in% ps_rank) {
    #     picrust_rank <- c("Picrust_trait", "Picrust_description")
    #     diff_rank <- setdiff(ps_rank, picrust_rank)
    #     if (length(diff_rank)) {
    #         stop("ranks of picrust2 functional profile must be one of ",
    #              paste(picrust_rank, collapse = ", "))
    #     }
    #     warning("para `taxa_rank` is not worked for picrust2 function profile ",
    #             "and is ignored")
    # } else {
    #     if (!check_rank_names(ps)) {
    #         stop(
    #             "ranks of `ps` must be one of ",
    #             paste(available_ranks, collapse = ", ")
    #         )
    #     }
    # }

    p_adjust <- match.arg(
        p_adjust,
        c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY")
    )
    method <- match.arg(method, c("welch.test", "t.test", "white.test"))
    transform <- match.arg(
      transform, c("identity", "log10", "log10p",
                   "SquareRoot", "CubicRoot", "logit")
    )
    # preprocess phyloseq object
    ps <- preprocess_ps(ps)
    ps <- transform_abundances(ps, transform = transform)

    # original abundance for white test
    # check taxa_rank
    ps <- check_taxa_rank(ps, taxa_rank)
    ps_orig_summarized <- pre_ps_taxa_rank(ps, taxa_rank)
    # if (taxa_rank == "all") {
    #     ps_orig_summarized <- summarize_taxa(ps)
    # } else if (taxa_rank == "none") {
    #     ps_orig_summarized <- extract_rank(ps, taxa_rank)
    # } else {
    #     ps_orig_summarized <- aggregate_taxa(ps, taxa_rank) %>%
    #         extract_rank(taxa_rank)
    # }
    otus <- abundances(ps_orig_summarized, norm = FALSE)
    abd <- transpose_and_2df(otus)

    # normalize, normalize first, then summarize
    norm_para <- c(norm_para, method = norm, object = list(ps))
    ps_normed <- do.call(normalize, norm_para)
    # if (taxa_rank == "all") {
    #     ps_summarized <- summarize_taxa(ps_normed)
    # } else if (taxa_rank == "none") {
    #     ps_summarized <- extract_rank(ps_normed, taxa_rank)
    # } else {
    #     ps_summarized <- aggregate_taxa(ps_normed, taxa_rank) %>%
    #         extract_rank(taxa_rank)
    # }
    ps_summarized <- pre_ps_taxa_rank(ps_normed, taxa_rank)
    abd_norm <- abundances(ps_summarized, norm = TRUE) %>%
        transpose_and_2df()

    sample_meta <- sample_data(ps_summarized)
    if (!group %in% names(sample_meta)) {
        stop("`group` must in the field of sample meta data")
    }
    groups <- sample_meta[[group]]
    abd_norm_group <- split(abd_norm, groups)

    # used for permute statistic in white's non parametric t test method
    orig_abd_group <- split(abd, groups)

    if (method == "welch.test") {
        test_res <- run_t_test(abd_norm_group, conf_level = conf_level, ...)
    } else if (method == "t.test") {
        test_res <- run_t_test(
            abd_norm_group,
            conf_level,
            var_equal = TRUE, ...
        )
    } else if (method == "white.test") {
        test_res <- run_white_test(
            abd_norm_group[[1]],
            abd_norm_group[[2]],
            orig_abd_group[[1]],
            orig_abd_group[[2]],
            group_names = names(abd_norm_group),
            conf_level = conf_level,
            nperm = nperm,
            ...
        )
    }

    feature <- tax_table(ps_summarized)@.Data[, 1]
    test_res[["feature"]] <- feature

    # ratio
    ratio <- purrr::pmap_dbl(abd_norm_group, ~ calc_ratio(.x, .y))
    test_res$ratio <- ratio

    # set the ci and ratio to 0, if both of the mean is 0
    test_res <- mutate(
        test_res,
        ci_lower = ifelse(.data$pvalue == 1, 0, .data$ci_lower),
        ci_upper = ifelse(.data$pvalue == 1, 0, .data$ci_upper)
    ) %>%
        select(.data$feature, .data$enrich_group, everything())

    # p value correction for multiple comparisons
    test_res$padj <- p.adjust(test_res$pvalue, method = p_adjust)
    row.names(test_res) <- paste0("feature", seq_len(nrow(test_res)))

    test_filtered <- filter(test_res, .data$padj <= pvalue_cutoff)

    if (!is.null(diff_mean_cutoff)) {
        test_filtered <- filter(
            test_filtered,
            abs(.data$ef_diff_mean) >= diff_mean_cutoff
        )
    }

    if (!is.null(ratio_cutoff)) {
        test_filtered <- filter(
            test_filtered,
            .data$ratio >= ratio_cutoff | .data$ratio <= 1 / ratio_cutoff
        )
    }

    # summarized tax table
    tax <- matrix(feature) %>%
        tax_table()
    row.names(tax) <- row.names(otus)

    # only keep five variables: feature, enrich_group, effect_size (diff_mean),
    # pvalue, and padj
    test_res <- test_res[, c(
        "feature", "enrich_group",
        "ef_diff_mean", "pvalue", "padj"
    )]
    test_filtered <- test_filtered[, c(
        "feature", "enrich_group",
        "ef_diff_mean", "pvalue", "padj"
    )]
    # row.names(test_filtered) <- paste0("marker", seq_len(nrow(test_filtered)))

    marker <- return_marker(test_filtered, test_res)
    marker <- microbiomeMarker(
        marker_table = marker,
        norm_method = get_norm_method(norm),
        diff_method = method,
        sam_data = sample_data(ps_normed),
        otu_table = otu_table(t(abd), taxa_are_rows = TRUE),
        tax_table = tax
    )

    marker
}

# t test and welch test ---------------------------------------------------

#' run t test or welch test
#'
#' @param abd_group a two length list, each element represents the feature
#' abundance of a group
#' @param conf_level numeric, confidence level of the interval, default 0.95
#' @param var_equal a logical variable indicating whether to treat the two
#' variances as being equal. If TRUE then the pooled variance is used to
#' estimate the variance otherwise the Welch (or Satterthwaite) approximation
#' to the degrees of freedom is used.
#' @param ... extra arguments passed to [t.test()]
#' @seealso [stats::t.test()]
#' @noRd
run_t_test <- function(abd_group, conf_level = 0.95, var_equal = FALSE, ...) {
    if (length(abd_group) != 2) {
        stop("welch test requires test between two groups")
    }

    t_res <- purrr::pmap(
        abd_group,
        ~ t.test(.x, .y, conf.level = conf_level, var.equal = var_equal, ...)
    )

    # p value
    p <- purrr::map_dbl(t_res, ~ .x$p.value)
    # set the p value to 1 is the result is NA
    p[is.na(p)] <- 1

    # means each group
    # different between means
    t_estimate <- purrr::map(t_res, ~ .x$estimate)
    mean_g1 <- purrr::map_dbl(t_estimate, ~ .x[1])
    mean_g2 <- purrr::map_dbl(t_estimate, ~ .x[2])
    diff_means <- mean_g1 - mean_g2

    # confidence interval
    ci <- purrr::map(t_res, ~ .x$conf.int)
    ci_lower <- purrr::map_dbl(ci, ~ .x[1])
    ci_upper <- purrr::map_dbl(ci, ~ .x[2])

    group_names <- names(abd_group)
    mean_names <- paste(group_names, "mean", sep = "_")
    res <- data.frame(
        p,
        mean_g1,
        mean_g2,
        diff_means,
        ci_lower,
        ci_upper
    )
    names(res) <- c(
        "pvalue", mean_names,
        "ef_diff_mean", "ci_lower", "ci_upper"
    )

    # enrich_group
    means_df <- data.frame(mean_g1, mean_g2)
    group_enriched <- group_names[apply(means_df, 1, which.max)]
    res$enrich_group <- group_enriched

    res
}

# white's non parametric t test -------------------------------------------

#' White's non-parametric t-test
#' @param norm_group1,norm_group2 a `data.frame`, normalized abundance of
#'   group 1 and group 2
#' @param orig_group1,orig_group2 a `data.frame`, absolute abundance of
#'   group 1 and group 2
#' @param group_names character vector, group names
#' @param conf_level numeric, confidence level of the interval, default 0.95
#' @param nperm number of permutations, default 1000
#' @param ... extra arguments passed to [t.test()]
#' @noRd
run_white_test <- function(norm_group1,
    norm_group2,
    orig_group1,
    orig_group2,
    group_names,
    conf_level = 0.95,
    nperm = 1000,
    ...) {
    two_sample_ts <- calc_twosample_ts(norm_group1, norm_group2)
    t_statistic <- purrr::map_dbl(two_sample_ts, ~ .x["t_static"])
    diff_means <- purrr::map_dbl(two_sample_ts, ~ .x["diff_means"])

    permute_p <- calc_permute_p(
        norm_group1, norm_group2,
        orig_group1, orig_group2,
        t_statistic,
        conf_level = conf_level,
        nperm = nperm
    )

    bootstrap_ci <- calc_bootstrap_ci(
        norm_group1,
        norm_group2,
        conf_level = conf_level,
        replicates = nperm
    )

    # sparse feature -----------------------------------------------------------
    n1 <- nrow(orig_group1)
    n2 <- nrow(orig_group2)
    sparse_index1 <- purrr::map_dbl(orig_group1, sum) < n1
    sparse_index2 <- purrr::map_dbl(orig_group2, sum) < n2
    sparse_index <- which(sparse_index1 & sparse_index2)

    sparse_res <- calc_sparse_p(orig_group1, orig_group2, sparse_index, ...)
    # p value
    sparse_p <- purrr::map_dbl(sparse_res, ~ .x$p.value)
    # set the p value to 1 is the result is NA
    sparse_p[is.na(sparse_p)] <- 1

    # means of each group
    sparse_diff_means <- calc_sparse_diff_mean(
        orig_group1,
        orig_group2,
        sparse_index
    )

    # confidence interval
    sparse_ci <- purrr::map(sparse_res, ~ .x$conf.int)
    sparse_ci_lower <- purrr::map_dbl(sparse_ci, ~ .x[1])
    sparse_ci_upper <- purrr::map_dbl(sparse_ci, ~ .x[2])

    permute_p$pvalue_two_side[sparse_index] <- sparse_p
    diff_means[sparse_index] <- sparse_diff_means
    ci_lower <- bootstrap_ci$ci_lower
    ci_lower[sparse_index] <- sparse_ci_lower
    ci_upper <- bootstrap_ci$ci_upper
    ci_upper[sparse_index] <- sparse_ci_upper

    mean_g1 <- colMeans(norm_group1)
    mean_g2 <- colMeans(norm_group2)

    mean_names <- paste(group_names, "mean", sep = "_")
    res <- data.frame(
        permute_p$pvalue_two_side,
        mean_g1,
        mean_g2,
        diff_means,
        ci_lower,
        ci_upper
    )
    names(res) <- c(
        "pvalue", mean_names,
        "ef_diff_mean", "ci_lower", "ci_upper"
    )

    # enrich_group
    means_df <- data.frame(mean_g1, mean_g2)
    group_enriched <- group_names[apply(means_df, 1, which.max)]
    res$enrich_group <- group_enriched

    res
}

#' permuted p values from Storey and Tibshirani(2003)
#'
#' @param t_statistic white non parametric t statistic
#' @noRd
calc_permute_p <- function(norm_group1,
    norm_group2,
    orig_group1,
    orig_group2,
    t_statistic,
    conf_level = 0.95,
    nperm = 1000) {
    n1 <- nrow(norm_group1)
    n2 <- nrow(norm_group2)
    smaples_n <- n1 + n2
    features_n <- length(norm_group1)


    # calculate p value -------------------------------------------------------
    permuted_res <- purrr::rerun(
        nperm,
        calc_permute_ts(norm_group1, norm_group2)
    )
    permuted_ts <- purrr::map_df(
        permuted_res,
        ~ .x %>% purrr::map(~ .x["t_static"])
    )
    permuted_diff_means <- purrr::map_df(
        permuted_res,
        ~ .x %>% purrr::map(~ .x["diff_means"])
    )

    if (n1 < 8 || n2 < 8) {
        # pool just the frequently observed ts
        cleaned_permuted_ttests <- permuted_ts
        group1_high_freq <- colSums(orig_group1) >= n1
        group2_high_freq <- colSums(orig_group2) >= n2
        high_freq_indices <- which(group1_high_freq | group2_high_freq)

        pvalue_one_side <- rep(0, features_n)
        pvalue_two_side <- rep(0, features_n)

        for (hf_index in high_freq_indices) {
            one_side <- 0
            two_side <- 0

            for (i in seq_len(nperm)) {
                for (hf_index2 in high_freq_indices) {
                    # one side
                    if (cleaned_permuted_ttests[i, hf_index2] >
                            t_statistic[hf_index]) {
                        one_side <- one_side + 1
                    }

                    # two side
                    if (abs(cleaned_permuted_ttests[i, hf_index2]) >
                        abs(t_statistic[hf_index])) {
                        two_side <- two_side + 1
                    }
                }
            }

            pvalue_one_side[hf_index] <- 1 /
                (nperm * length(high_freq_indices)) * one_side
            pvalue_two_side[hf_index] <- 1 /
                (nperm * length(high_freq_indices)) * two_side
        }
    } else {
        no <- calc_p_large_sample(permuted_ts, t_statistic)
        two_side_no <- purrr::map_dbl(no, ~ .x["two_side"])
        g_side_no <- purrr::map_dbl(no, ~ .x["g_side"])
        l_side_no <- purrr::map_dbl(no, ~ .x["l_side"])

        pvalue_two_side <- 1 / (nperm + 1) * (two_side_no + 1)
        pvalue_g_side <- 1 / (nperm + 1) * (g_side_no + 1)
        pvalue_l_side <- 1 / (nperm + 1) * (l_side_no + 1)
    }

    pvalue <- data.frame(
        pvalue_two_side = pvalue_two_side,
        pvalue_g_side = pvalue_g_side,
        pvalue_l_side = pvalue_l_side
    )

    pvalue
}

# calculate the permute p value, if number of samples in both groups are larger
# than 8
calc_p_large_sample <- function(permuted_ts, t_statistic) {
    no <- purrr::map2(
        permuted_ts,
        t_statistic,
        ~ purrr::map_df(
            .x,
            function(i) {
                l_side <- 0
                g_side <- 0
                two_side <- 0
                if (i > .y) {
                    g_side <- g_side + 1
                }
                if (i < .y) {
                    l_side <- l_side + 1
                }
                if (abs(i) > abs(.y)) {
                    two_side <- two_side + 1
                }
                return(c(two_side = two_side, g_side = g_side, l_side = l_side))
            }
        )
    )

    purrr::map(no, colSums)
}

# bootstrap confidence interval
calc_bootstrap_ci <- function(norm_group1,
    norm_group2,
    conf_level = 0.95,
    replicates = 1000) {
    diff_means <- purrr::map2_df(
        norm_group1,
        norm_group2,
        bootstrap_diff_mean_prop_single
    )

    ci_lower <- purrr::map_dbl(
        diff_means,
        ~ .x[max(0, floor(0.5 * (1 - conf_level) * length(.x)))]
    )

    ci_upper <- purrr::map_dbl(
        diff_means,
        ~ .x[min(
            length(.x) - 1,
            ceiling((conf_level + 0.5 * (1.0 - conf_level)) * length(.x))
        )]
    )

    return(data.frame(ci_lower = ci_lower, ci_upper = ci_upper))
}

# bootstrap one time, difference mean of an single feature
bootstrap_diff_mean_prop_single <- function(group1, group2, replicates = 1000) {
    bootstrap_one <- function(group1, group2) {
        n1 <- length(group1)
        n2 <- length(group2)
        choices1 <- sample.int(n1, n1, replace = TRUE)
        choices2 <- sample.int(n2, n2, replace = TRUE)
        sample_group1 <- group1[choices1]
        sample_group2 <- group2[choices2]
        diff_means <- mean(sample_group1) - mean(sample_group2)

        diff_means
    }

    diff_means <- replicate(
        replicates,
        bootstrap_one(group1, group2),
        simplify = TRUE
    )

    return(sort(diff_means))
}

calc_permute_ts <- function(norm_group1, norm_group2) {
    n1 <- nrow(norm_group1)
    n2 <- nrow(norm_group2)
    samples_n <- n1 + n2
    perm <- sample.int(samples_n, samples_n)
    features_n <- length(norm_group1)

    # permute the rows
    prop_group <- dplyr::bind_rows(norm_group1, norm_group2)
    prop_group_permute <- prop_group[perm, ]

    calc_twosample_ts(
        prop_group_permute[seq_len(n1), ],
        prop_group_permute[(n1 + 1):(n1 + n2), ]
    )
}

# Calculate two sample t statistic of all features
calc_twosample_ts <- function(norm_group1, norm_group2) {
    ts <- purrr::map2(
        norm_group1,
        norm_group2,
        calc_twosample_ts_single_feature
    )

    ts
}

#' Calculate two sample t statistic of a feature, return a two length vector:
#' two sample t static and difference means (effect size)
#' @importFrom stats var
#' @noRd
calc_twosample_ts_single_feature <- function(norm_group1, norm_group2) {
    n1 <- length(norm_group1)
    n2 <- length(norm_group2)

    mean_g1 <- sum(norm_group1) / n1
    var_g1 <- var(norm_group1)
    stderr_g1 <- var_g1 / n1

    mean_g2 <- sum(norm_group2) / n2
    var_g2 <- var(norm_group2)
    stderr_g2 <- var_g2 / n2

    diff_means <- mean_g1 - mean_g2

    denom <- sqrt(stderr_g1 + stderr_g2)
    if (denom == 0) {
        warning(
            "degenerate case: zero variance for both groups;",
            " variance set to 1e-6.",
            call. = FALSE
        )
        t_static <- diff_means / 1e-6
    } else {
        t_static <- diff_means / denom
    }

    return(c(t_static = t_static, diff_means = diff_means))
}

#' calculate p values for sparse data using fisher's exact test
#' @importFrom stats fisher.test
#' @noRd
calc_sparse_p <- function(orig_group1, orig_group2, sparse_index, ...) {
    cm_list <- create_contingency_matrix(
        orig_group1,
        orig_group2,
        sparse_index = sparse_index
    )

    purrr::map(cm_list, fisher.test, ...)
}

# create contingency matrix  list for fisher exact test
create_contingency_matrix <- function(orig_group1, orig_group2, sparse_index) {
    all1 <- sum(orig_group1)
    all2 <- sum(orig_group2)
    sparse_group1 <- orig_group1[sparse_index]
    sparse_group2 <- orig_group2[sparse_index]
    feature_abd1 <- colSums(sparse_group1)
    feature_abd2 <- colSums(sparse_group2)

    cm_list <- purrr::map2(
        feature_abd1, feature_abd2,
        ~ matrix(
            c(.x, all1 - .x, .y, all2 - .y),
            nrow = 2,
            dimnames = list(c("featrue", "other"), c("group1", "group2"))
        )
    )

    cm_list
}

calc_sparse_diff_mean <- function(orig_group1, orig_group2, sparse_index) {
    all1 <- sum(orig_group1)
    all2 <- sum(orig_group2)
    sparse_group1 <- orig_group1[sparse_index]
    sparse_group2 <- orig_group2[sparse_index]
    feature_abd1 <- colSums(sparse_group1)
    feature_abd2 <- colSums(sparse_group2)

    purrr::map2_dbl(
        feature_abd1,
        feature_abd2,
        ~ (.x / all1 - .y / all2)
    )
}


# ratio ------------------------------------------------------------------------

#' ratio used for effect size
#'
#' @param abd1,abd2 numeric vector, abundance of a given feature of the group1
#' and group2
#' @param pseducount numeric, pseducount for unobserved data
#'
#' @return numeric ratio for a feature
#' @noRd
calc_ratio <- function(abd1, abd2, pseudocount = 0.5) {
    n1 <- length(abd1)
    n2 <- length(abd2)

    mean_g1 <- sum(abd1) / n1
    mean_g2 <- sum(abd2) / n2

    if (mean_g1 == 0 || mean_g2 == 0) {
        pseudocount <- pseudocount / (mean_g1 + mean_g2)
        mean_g1 <- mean_g1 + pseudocount
        mean_g2 <- mean_g2 + pseudocount
    }

    res <- mean_g1 / mean_g2
    if (is.na(res)) {
        res <- 0
    }

    res
}
HuaZou/MicrobiomeAnalysis documentation built on May 13, 2024, 11:10 a.m.