View source: R/cmd_batch_rnaseq_differential_analysis.R
RNASeqDifferentialAnalysis | R Documentation |
This function will run differential analysis on ballgown,
DESeq2 and edgeR in background.
This function do following things :
ballgown analysis
Raw reads are normalized into FPKM values
The main statistic test in ballgown is paramatic F-test comparing nested
linear models
DESeq2 analysis
Median of rations normalization(MRN) is used in DESeq2 for raw reads
count normalization.
Sequencing depth and RNA composition is taken into consideration is this
normalization method.
The main statistic test in DESeq2 is negative binomial distribution.
edgeR analysis
Raw reads are normalized by TMM and library size.
(run calcNormFactors()
to get a DGEList,
and then run cpm()
on that DGEList)
The main statistic test in edgeR is trimmed mean of M-values(TMM).
If you want to run differential analysis on ballgown,
DESeq2, edgeR for the following RNA-Seq workflow in background,
please see RNASeqDifferentialAnalysis()
function.
RNASeqDifferentialAnalysis(RNASeqRParam, which.trigger = "OUTSIDE", INSIDE.path.prefix = NA, Pre_DE.visualization = TRUE, Post_DE.visualization = TRUE, ballgown.run = TRUE, ballgown.pval = 0.05, ballgown.log2FC = 1, DESeq2.run = TRUE, DESeq2.pval = 0.1, DESeq2.log2FC = 1, edgeR.run = TRUE, edgeR.pval = 0.05, edgeR.log2FC = 1, check.s4.print = TRUE)
RNASeqRParam |
S4 object instance of experiment-related parameters |
which.trigger |
Default value is |
INSIDE.path.prefix |
Default value is |
Pre_DE.visualization |
Default |
Post_DE.visualization |
Default |
ballgown.run |
Default |
ballgown.pval |
Default |
ballgown.log2FC |
Default |
DESeq2.run |
Default |
DESeq2.pval |
Default |
DESeq2.log2FC |
Default |
edgeR.run |
Default |
edgeR.pval |
Default |
edgeR.log2FC |
Default |
check.s4.print |
Default |
None
Kuan-Hao Chao
data(yeast) ## Not run: RNASeqDifferentialAnalysis(RNASeqRParam = yeast) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.