Description Usage Arguments Author(s) See Also Examples
Calculates the genewise variability. What spots belongs to which genes
is defined by the layout of the slides, where all slides are assumed to
have the same layout. See class Layout
for more
information about genes. For speed improvement, the gene variability
will be cached for future queries. To override the cache, use
force=TRUE
.
1 2 |
robust |
If |
force |
If |
slides |
The slides which should be included in the calculations.
If |
Henrik Bengtsson (http://www.braju.com/R/)
To calculate the mean (or any other quantile) of the genewise
variabilities see *getMOR()
.
For more information see MAData
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | SMA$loadData("mouse.data")
layout <- Layout$read("MouseArray.Layout.dat", path=system.file("data-ex", package="aroma"))
raw <- RawData(mouse.data, layout=layout)
ma <- getSignal(raw, bgSubtract=TRUE)
ma.norm <- clone(ma)
normalizeWithinSlide(ma.norm, method="s")
normalizeAcrossSlides(ma.norm)
var <- getGeneVariability(ma)
var.norm <- getGeneVariability(ma.norm)
var.diff <- var - var.norm
# Statistics
print(summary(var))
print(summary(var.norm))
print(summary(var.diff))
cat("Number of 'improved' genes :", sum(var.diff > 0, na.rm=TRUE), "\n")
cat("Number of 'worsened' genes :", sum(var.diff < 0, na.rm=TRUE), "\n")
cat("Number of 'unchanged' genes:", sum(var.diff == 0, na.rm=TRUE), "\n")
# Plots
xlim <- quantile(c(var, var.norm), probs=c(0,0.999))
subplots(4)
hist(var, nclass=100, xlim=xlim, cex.main=0.7,
main="Gene variability before normalization");
hist(var.norm, nclass=100, xlim=xlim, cex.main=0.7,
main="Gene variability after normalization");
hist(var.diff, nclass=50, cex.main=0.7, main="Improvements");
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.