R/normalizeFragmentLength.R

###########################################################################/**
# @RdocDefault normalizeFragmentLength
#
# @title "Normalizes signals for PCR fragment-length effects"
#
# \description{
#  @get "title". Some or all signals are used to estimated the
#  normalization function.  All signals are normalized.
# }
#
# @synopsis
#
# \arguments{
#   \item{y}{A @numeric @vector of length K of signals to be normalized
#     across E enzymes.}
#   \item{fragmentLengths}{An @integer KxE @matrix of fragment lengths.}
#   \item{targetFcns}{An optional @list of E @functions; one per enzyme.
#     If @NULL, the data is normalized to have constant fragment-length
#     effects (all equal to zero on the log-scale).}
#   \item{subsetToFit}{The subset of data points used to fit the
#      normalization function.
#      If @NULL, all data points are considered.}
#   \item{onMissing}{Specifies how data points for which there is no
#      fragment length is normalized.
#      If \code{"ignore"}, the values are not modified.
#      If \code{"median"}, the values are updated to have the same
#      robust average as the other data points.
#   }
#   \item{.isLogged}{A @logical.}
#   \item{...}{Additional arguments passed to @see "stats::lowess".}
#   \item{.returnFit}{A @logical.}
# }
#
# \value{
#   Returns a @numeric @vector of the normalized signals.
# }
#
# \section{Multi-enzyme normalization}{
#  It is assumed that the fragment-length effects from multiple enzymes
#  added (with equal weights) on the intensity scale.
#  The fragment-length effects are fitted for each enzyme separately based
#  on units that are exclusively for that enzyme.
#  \emph{If there are no or very such units for an enzyme, the assumptions
#  of the model are not met and the fit will fail with an error.}
#  Then, from the above single-enzyme fits the average effect across
#  enzymes is the calculated for each unit that is on multiple enzymes.
# }
#
# \section{Target functions}{
#   It is possible to specify custom target function effects for each
#   enzyme via argument \code{targetFcns}.  This argument has to be a
#   @list containing one @function per enzyme and ordered in the same
#   order as the enzyme are in the columns of argument
#   \code{fragmentLengths}.
#   For instance, if one wish to normalize the signals such that their
#   mean signal as a function of fragment length effect is contantly
#   equal to 2200 (or the intensity scale), the use
#   \code{targetFcns=function(fl, ...) log2(2200)} which completely
#   ignores fragment-length argument 'fl' and always returns a
#   constant.
#   If two enzymes are used, then use
#   \code{targetFcns=rep(list(function(fl, ...) log2(2200)), 2)}.
#
#   Note, if \code{targetFcns} is @NULL, this corresponds to
#   \code{targetFcns=rep(list(function(fl, ...) 0), ncol(fragmentLengths))}.
#
#   Alternatively, if one wants to only apply minimial corrections to
#   the signals, then one can normalize toward target functions that
#   correspond to the fragment-length effect of the average array.
# }
#
# \examples{
#   @include "../incl/normalizeFragmentLength-ex1.Rex"
#
#   @include "../incl/normalizeFragmentLength-ex2.Rex"
# }
#
# @author "HB"
#
# \references{
#   [1] @include "../incl/BengtssonH_etal_2008.bib.Rdoc" \cr
# }
#
# @keyword "nonparametric"
# @keyword "robust"
#*/###########################################################################
setMethodS3("normalizeFragmentLength", "default", function(y, fragmentLengths, targetFcns=NULL, subsetToFit=NULL, onMissing=c("ignore", "median"), .isLogged=TRUE, ..., .returnFit=FALSE) {
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Validate arguments
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Argument 'y':
  y <- as.double(y);
  nbrOfDataPoints <- length(y);
  okY <- is.finite(y);
  # Sanity check
  if (!any(okY, na.rm=TRUE)) {
    throw("Cannot fit normalization function to enzyme, because there are no (finite) data points in argument 'y'.");
  }

  # Argument 'fragmentLengths':
  if (!is.matrix(fragmentLengths)) {
    if (is.vector(fragmentLengths)) {
      fragmentLengths <- as.matrix(fragmentLengths);
    } else {
      throw("Argument 'fragmentLengths' must be a matrix: ",
                                                class(fragmentLengths)[[1]]);
    }
  }
  if (nrow(fragmentLengths) != nbrOfDataPoints) {
    throw("Number of rows in argument 'fragmentLengths' does not match the length of argument 'y': ", nrow(fragmentLengths), " != ", nbrOfDataPoints);
  }
  nbrOfEnzymes <- ncol(fragmentLengths);
  allEnzymes <- seq(length=nbrOfEnzymes);
  # Coerce to doubles
  for (ee in allEnzymes) {
    fragmentLengths[,ee] <- as.double(fragmentLengths[,ee]);
  }

  # Assert that there are some finite fragment lengths
  hasFL <- is.finite(fragmentLengths);
  if (!any(hasFL)) {
    throw("Cannot fit normalization function. Argument 'fragmentLengths' contains no finite values.");
  }

  # Assert that for each enzyme there exist some finite fragment lengths
  for (ee in allEnzymes) {
    if (sum(hasFL[,ee]) == 0) {
      throw(sprintf("Cannot fit normalization function to enzyme #%d, because there are no units with finite fragment lengths for this enzyme: ", ee));
    }
  }

  # Count the number of enzymes per units
  countFL <- rep(0L, times=nbrOfDataPoints);
  for (ee in allEnzymes) {
    countFL <- countFL + as.integer(hasFL[,ee]);
  }

  # Assert that there are units from a single enzyme
  isSingleEnzymed <- (countFL == 1L);
  if (sum(isSingleEnzymed) == 0) {
    throw("Cannot fit normalization function, because none of the units are on fragments from a single enzyme, or equivalently, there exist no rows in argument 'fragmentLenghts' that only have one finite value.");
  }

  # Argument 'targetFcns':
  if (!is.null(targetFcns)) {
    if (!is.list(targetFcns)) {
      if (nbrOfEnzymes == 1L) {
        targetFcns <- list(targetFcns);
      } else {
        throw("Argument 'targetFcns' is not a list: ", class(targetFcns)[1]);
      }
    }
    if (length(targetFcns) != nbrOfEnzymes) {
      throw("Number of elements in 'targetFcns' does not match the number of columns in 'fragmentLengths': ", length(targetFcns), " != ", nbrOfEnzymes);
    }

    # Validate each element
    for (ee in allEnzymes) {
      if (!is.function(targetFcns[[ee]])) {
        throw("One element in 'targetFcns' is not a function: ", class(targetFcns[[ee]])[1]);
      }
    }
  }

  # Argument 'subsetToFit':
  if (!is.null(subsetToFit)) {
    subsetToFit <- as.integer(subsetToFit);
    if (length(subsetToFit) > nbrOfDataPoints) {
      throw("The length of argument 'subsetToFit' does not match the number of data points: ", length(subsetToFit), " != ", nbrOfDataPoints);
    }
  }

  # Argument 'onMissing':
  onMissing <- match.arg(onMissing);


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Estimate normalization function and predict the signals
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Fit smooth curve to each enzyme separately

  # KxE matrix for sample (and target predictions)
  mu <- matrix(NA_real_, nrow=nbrOfDataPoints, ncol=nbrOfEnzymes);
  if (!is.null(targetFcns)) {
    muT <- matrix(NA_real_, nrow=nbrOfDataPoints, ncol=nbrOfEnzymes);
  }

  if (.returnFit) {
    fits <- vector("list", nbrOfEnzymes);
  }

  for (ee in allEnzymes) {
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    # (a) Fit normalization function
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    # (i) Fit only to units that are on fragments from a single (this)
    #     enzyme and that there exist finite fragment lengths
    ok <- isSingleEnzymed & hasFL[,ee];
    if (!any(ok)) {
      throw(sprintf("Cannot fit normalization function to enzyme #%d, because there are no units in argument 'fragmentLengths' that are unique to this enzyme and with finite fragment lengths: ", ee));
    }

    # (ii) Fit only to units with non-missing data points.
    ok <- ok & okY;
    # Sanity check
    if (!any(ok)) {
      throw(sprintf("Cannot fit normalization function to enzyme #%d, because there are no units in argument 'fragmentLengths' that are unique to this enzyme and with finite fragment lengths and at the same time have finite values in argument 'y': ", ee));
    }

    if (!is.null(subsetToFit)) {
      ok[-subsetToFit] <- FALSE;

      # Sanity check
      if (!any(ok)) {
        throw(sprintf("Cannot fit normalization function to enzyme #%d, because after subsetting there are no units in argument 'fragmentLengths' that are unique to this enzyme and with finite fragment lengths and at the same time have finite values in argument 'y': ", ee));
      }
    }


    # All fragment lengths for current enzyme
    fl <- fragmentLengths[,ee];

    # Fit finite {(lambda, log2theta)_j} to data points j on current enzyme
    suppressWarnings({
      fit <- lowess(fl[ok], y[ok], ...);
      class(fit) <- "lowess";
    })
    # Not needed anymore
    ok <- NULL;

    if (.returnFit)
      fits[[ee]] <- fit;

    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    # (b) Calculate correction factor
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    # Calculate the correction factor for every data point on this enzyme
    ok <- (hasFL[,ee] & okY);
    mu[ok,ee] <- predict(fit, newdata=fl[ok]);

    if (.returnFit) {
      fits[[ee]] <- list(fit=fit, mu=mu[,ee]);
    }

    # Normalize toward a target function?
    if (!is.null(targetFcns)) {
      muT[ok,ee] <- targetFcns[[ee]](fl[ok]);
      if (.returnFit) {
        fits[[ee]]$muT <- muT[,ee];
      }
    }

    # Not needed anymore
    fit <- fl <- NULL;
  } # for (ee ...)
  # Not needed anymore
  hasFL <- isSingleEnzymed <- NULL;


  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Calculate the *average* predicted signal across enzymes
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Sum on the non-log scale.
  if (.isLogged) {
    mu <- 2^mu;
    if (!is.null(targetFcns))
      muT <- 2^muT;
  }

  mu <- rowSums(mu, na.rm=TRUE);
#  mu <- mu / countFL; # Averaging (needed?!?)

  if (!is.null(targetFcns)) {
    muT <- rowSums(muT, na.rm=TRUE);
#    muT <- muT / countFL; # Averaging (needed?!?)
  }


  # Special case: Units with unknown fragment lengths
  if (onMissing != "ignore") {
    isMissing <- (countFL == 0);
    if (any(isMissing)) {
      if (onMissing == "median") {
        # Let the predicted value for these units be the robust average
        # of all other units (based on the assumption that the missing
        # fragment lengths are distributed as the known ones).

        # Identify the set to be used to estimate the target average
        ok <- (okY & !isMissing);
        # Sanity check
        if (!any(ok)) {
          throw("Cannot fit normalization function to loci with unknown fragment lengths, because there are no (finite) data points to be fitted.");
        }

        if (!is.null(subsetToFit)) {
          ok[-subsetToFit] <- FALSE;
          # Sanity check
          if (!any(ok)) {
            throw("Cannot fit normalization function to loci with unknown fragment lengths, because after subsetting there are no (finite) data points to be fitted.");
          }
        }

        # Substitute the predicted means with the median of the already
        # predicted set of loci.
        mu[isMissing] <- median(mu[ok], na.rm=TRUE);
        if (!is.null(targetFcns)) {
          muT[isMissing] <- median(muT[ok], na.rm=TRUE);
        }
        # Not needed anymore
        ok <- NULL;
      } # if (onMissing == "median")
    }
    # Not needed anymore
    isMissing <- NULL;
  }
  # Not needed anymore
  countFL <- NULL;

  if (.isLogged) {
    mu <- log2(mu);
    if (!is.null(targetFcns))
      muT <- log2(muT);
  }

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Calculate the correction ("normalization") factor
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Calculate correction factors
  if (is.null(targetFcns)) {
    dy <- mu;
  } else {
    dy <- (mu - muT);
  }
  # Not needed anymore
  mu <- NULL;
  if (!is.null(targetFcns)) {
    # Not needed anymore
    muT <- NULL;
  }

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Normalize signals
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # Transform signals
  ok <- is.finite(dy) & okY;
  # Not needed anymore
  okY <- NULL;
  y[ok] <- y[ok] - dy[ok];

  if (.returnFit) {
    attr(y, "modelFit") <- fits;
  }

  y;
}, private=TRUE)


############################################################################
# HISTORY:
# 2010-09-18
# o ROBUSTNESS: Now normalizeFragmentLength() asserts that arguments
#   'fragmentLengths' and 'y' contain at least some finite values and
#   specifies the same number of units.  In addition, the method also
#   gives more informative error messages in case it cannot fit the
#   normalization function due to non-finite values.
# 2008-09-11
# o Now onMissing="median" estimates the median on using the subset to fit.
# 2008-09-10
# o Added argument 'onMissing' to normalizeFragmentLength() for specifying
#   how to normalize (if at all) data points for which the fragment lengths
#   are unknown.  For backward compatibility, we start of by having it
#   "ignore" by default.
# 2008-05-10
# o BUG FIX: If the 'subsetToFit' was shorter than the number of data
#   points, an exception was thrown.  The test was supposed to be assert
#   that the subset was not greater than the number of data points.
# 2008-04-14
# o Removed any usage of R.utils::Arguments.
# 2007-11-29
# o BUG FIX: The implemented multi-enzyme model was not the one in mind;
#   The correction for the multi-enzyme data points was not right.
#   Have now created an updated example that displays the normalized
#   log-ratios (as a function of fragment length as well as they densities).
#   The example does also test the case for non-aliquot mixing proportions
#   between enzymes. This is actually automagically corrected for by the
#   way the model was set up, i.e. there is no need to estimate the
#   mixing proportions.
# 2007-11-19
# o Added Rdoc examples. From these simulation examples, it looks like the
#   multi-enzyme normalization method works.
# o Updated normalizeFragmentLength() to handle multiple enzymes.
# 2006-11-28
# o Created.
############################################################################
HenrikBengtsson/aroma.light-BioC_release documentation built on May 7, 2019, 1:55 a.m.