#' Compare SingleCellExperiment objects
#'
#' Combine the data from several SingleCellExperiment objects and produce some
#' basic plots comparing them.
#'
#' @param sces named list of SingleCellExperiment objects to combine and
#' compare.
#' @param point.size size of points in scatter plots.
#' @param point.alpha opacity of points in scatter plots.
#' @param fits whether to include fits in scatter plots.
#' @param colours vector of colours to use for each dataset.
#'
#' @details
#' The returned list has three items:
#'
#' \describe{
#' \item{\code{RowData}}{Combined row data from the provided
#' SingleCellExperiments.}
#' \item{\code{ColData}}{Combined column data from the provided
#' SingleCellExperiments.}
#' \item{\code{Plots}}{Comparison plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean distribution.}
#' \item{\code{Variances}}{Boxplot of variance distribution.}
#' \item{\code{MeanVar}}{Scatter plot with fitted lines showing the
#' mean-variance relationship.}
#' \item{\code{LibrarySizes}}{Boxplot of the library size
#' distribution.}
#' \item{\code{ZerosGene}}{Boxplot of the percentage of each gene
#' that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the percentage of each cell
#' that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot with fitted lines showing
#' the mean-zeros relationship.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
#' names(comparison)
#' names(comparison$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth geom_boxplot
#' scale_y_continuous scale_y_log10 scale_x_log10 xlab ylab ggtitle
#' theme_minimal scale_colour_manual scale_fill_manual
#' @importFrom SingleCellExperiment cpm<-
#' @export
compareSCEs <- function(sces, point.size = 0.1, point.alpha = 0.1,
fits = TRUE, colours = NULL) {
checkmate::assertList(sces, types = "SingleCellExperiment",
any.missing = FALSE, min.len = 1, names = "unique")
checkmate::assertNumber(point.size, finite = TRUE)
checkmate::assertNumber(point.alpha, lower = 0, upper = 1)
checkmate::assertLogical(fits, any.missing = FALSE, len = 1)
if (!is.null(colours)) {
checkmate::assertCharacter(colours, any.missing = FALSE,
len = length(sces))
} else {
colours <- scales::hue_pal()(length(sces))
}
for (name in names(sces)) {
sce <- sces[[name]]
rowData(sce)$Dataset <- name
colData(sce)$Dataset <- name
sce <- scater::calculateQCMetrics(sce)
cpm(sce) <- scater::calculateCPM(sce, use_size_factors = FALSE)
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
n.features <- colData(sce)$total_features_by_counts
colData(sce)$PctZero <- 100 * (1 - n.features / nrow(sce))
sces[[name]] <- sce
}
features <- rowData(sces[[1]])
cells <- colData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
features <- rbindMatched(features, rowData(sce))
cells <- rbindMatched(cells, colData(sce))
}
}
features$Dataset <- factor(features$Dataset, levels = names(sces))
cells$Dataset <- factor(cells$Dataset, levels = names(sces))
features <- data.frame(features)
cells <- data.frame(cells)
means <- ggplot(features,
aes_string(x = "Dataset", y = "MeanLogCPM",
colour = "Dataset")) +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of mean expression") +
theme_minimal()
vars <- ggplot(features,
aes_string(x = "Dataset", y = "VarLogCPM",
colour = "Dataset")) +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Distribution of variance") +
theme_minimal()
mean.var <- ggplot(features,
aes_string(x = "MeanLogCPM", y = "VarLogCPM",
colour = "Dataset", fill = "Dataset")) +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab(expression(paste("Mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Variance ", log[2], "(CPM + 1)"))) +
ggtitle("Mean-variance relationship") +
theme_minimal()
libs <- ggplot(cells,
aes_string(x = "Dataset", y = "total_counts",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(labels = scales::comma) +
scale_colour_manual(values = colours) +
ylab("Total counts per cell") +
ggtitle("Distribution of library sizes") +
theme_minimal()
z.gene <- ggplot(features,
aes_string(x = "Dataset", y = "pct_dropout_by_counts",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
ylab("Percentage zeros per gene") +
ggtitle("Distribution of zeros per gene") +
theme_minimal()
z.cell <- ggplot(cells,
aes_string(x = "Dataset", y = "PctZero",
colour = "Dataset")) +
geom_boxplot() +
scale_y_continuous(limits = c(0, 100)) +
scale_colour_manual(values = colours) +
ylab("Percentage zeros per cell") +
ggtitle("Distribution of zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(features,
aes_string(x = "MeanCounts",
y = "pct_dropout_by_counts",
colour = "Dataset", fill = "Dataset")) +
geom_point(size = point.size, alpha = point.alpha) +
scale_x_log10(labels = scales::comma) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Mean count") +
ylab("Percentage zeros") +
ggtitle("Mean-zeros relationship") +
theme_minimal()
if (fits) {
mean.var <- mean.var + geom_smooth()
mean.zeros <- mean.zeros + geom_smooth()
}
comparison <- list(RowData = features,
ColData = cells,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros))
return(comparison)
}
#' Diff SingleCellExperiment objects
#'
#' Combine the data from several SingleCellExperiment objects and produce some
#' basic plots comparing them to a reference.
#'
#' @param sces named list of SingleCellExperiment objects to combine and
#' compare.
#' @param ref string giving the name of the SingleCellExperiment to use as the
#' reference
#' @param point.size size of points in scatter plots.
#' @param point.alpha opacity of points in scatter plots.
#' @param fits whether to include fits in scatter plots.
#' @param colours vector of colours to use for each dataset.
#'
#' @details
#'
#' This function aims to look at the differences between a reference
#' SingleCellExperiment and one or more others. It requires each
#' SingleCellExperiment to have the same dimensions. Properties are compared by
#' ranks, for example when comparing the means the values are ordered and the
#' differences between the reference and another dataset plotted. A series of
#' Q-Q plots are also returned.
#'
#' The returned list has five items:
#'
#' \describe{
#' \item{\code{Reference}}{The SingleCellExperiment used as the reference.}
#' \item{\code{RowData}}{Combined feature data from the provided
#' SingleCellExperiments.}
#' \item{\code{ColData}}{Combined column data from the provided
#' SingleCellExperiments.}
#' \item{\code{Plots}}{Difference plots
#' \describe{
#' \item{\code{Means}}{Boxplot of mean differences.}
#' \item{\code{Variances}}{Boxplot of variance differences.}
#' \item{\code{MeanVar}}{Scatter plot showing the difference from
#' the reference variance across expression ranks.}
#' \item{\code{LibraeySizes}}{Boxplot of the library size
#' differences.}
#' \item{\code{ZerosGene}}{Boxplot of the differences in the
#' percentage of each gene that is zero.}
#' \item{\code{ZerosCell}}{Boxplot of the differences in the
#' percentage of each cell that is zero.}
#' \item{\code{MeanZeros}}{Scatter plot showing the difference from
#' the reference percentage of zeros across expression ranks.}
#' }
#' }
#' \item{\code{QQPlots}}{Quantile-Quantile plots
#' \describe{
#' \item{\code{Means}}{Q-Q plot of the means.}
#' \item{\code{Variances}}{Q-Q plot of the variances.}
#' \item{\code{LibrarySizes}}{Q-Q plot of the library sizes.}
#' \item{\code{ZerosGene}}{Q-Q plot of the percentage of zeros per
#' gene.}
#' \item{\code{ZerosCell}}{Q-Q plot of the percentage of zeros per
#' cell.}
#' }
#' }
#' }
#'
#' The plots returned by this function are created using
#' \code{\link[ggplot2]{ggplot}} and are only a sample of the kind of plots you
#' might like to consider. The data used to create these plots is also returned
#' and should be in the correct format to allow you to create further plots
#' using \code{\link[ggplot2]{ggplot}}.
#'
#' @return List containing the combined datasets and plots.
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' names(difference)
#' names(difference$Plots)
#' @importFrom ggplot2 ggplot aes_string geom_point geom_boxplot xlab ylab
#' ggtitle theme_minimal geom_hline geom_abline scale_colour_manual
#' scale_fill_manual
#' @importFrom SingleCellExperiment cpm<-
#' @export
diffSCEs <- function(sces, ref, point.size = 0.1, point.alpha = 0.1,
fits = TRUE, colours = NULL) {
checkmate::assertList(sces, types = "SingleCellExperiment",
any.missing = FALSE, min.len = 2, names = "unique")
checkmate::assertString(ref)
checkmate::assertNumber(point.size, finite = TRUE)
checkmate::assertNumber(point.alpha, lower = 0, upper = 1)
checkmate::assertLogical(fits, any.missing = FALSE, len = 1)
if (!(ref %in% names(sces))) {
stop("'ref' must be the name of a SingleCellExperiment in 'sces'")
} else {
ref.idx <- which(names(sces) == ref)
}
if (!is.null(colours)) {
checkmate::assertCharacter(colours, any.missing = FALSE,
len = length(sces) - 1)
} else {
colours <- scales::hue_pal()(length(sces))
colours <- colours[-ref.idx]
}
ref.dim <- dim(sces[[ref]])
for (name in names(sces)) {
sce <- sces[[name]]
if (!identical(dim(sce), ref.dim)) {
stop("all datasets in 'sces' must have the same dimensions")
}
rowData(sce)$Dataset <- name
colData(sce)$Dataset <- name
sce <- scater::calculateQCMetrics(sce)
cpm(sce) <- scater::calculateCPM(sce, use_size_factors = FALSE)
sce <- addFeatureStats(sce, "counts")
sce <- addFeatureStats(sce, "cpm", log = TRUE)
n.features <- colData(sce)$total_features_by_counts
colData(sce)$PctZero <- 100 * (1 - n.features / nrow(sce))
rowData(sce)$RankCounts <- rank(rowData(sce)$mean_counts)
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
ref.means <- sort(rowData(ref.sce)$MeanLogCPM)
ref.vars <- sort(rowData(ref.sce)$VarLogCPM)
ref.libs <- sort(colData(ref.sce)$total_counts)
ref.z.gene <- sort(rowData(ref.sce)$pct_dropout_by_counts)
ref.z.cell <- sort(colData(ref.sce)$PctZero)
ref.rank.ord <- order(rowData(ref.sce)$RankCounts)
ref.vars.rank <- rowData(ref.sce)$VarLogCPM[ref.rank.ord]
ref.z.gene.rank <- rowData(ref.sce)$pct_dropout_by_counts[ref.rank.ord]
for (name in names(sces)) {
sce <- sces[[name]]
rowData(sce)$RefRankMeanLogCPM <- ref.means[
rank(rowData(sce)$MeanLogCPM)]
rowData(sce)$RankDiffMeanLogCPM <- rowData(sce)$MeanLogCPM -
rowData(sce)$RefRankMeanLogCPM
rowData(sce)$RefRankVarLogCPM <- ref.vars[rank(rowData(sce)$VarLogCPM)]
rowData(sce)$RankDiffVarLogCPM <- rowData(sce)$VarLogCPM -
rowData(sce)$RefRankVarLogCPM
colData(sce)$RefRankLibSize <- ref.libs[rank(colData(sce)$total_counts)]
colData(sce)$RankDiffLibSize <- colData(sce)$total_counts -
colData(sce)$RefRankLibSize
rowData(sce)$RefRankZeros <- ref.z.gene[rank(
rowData(sce)$pct_dropout_by_counts)]
rowData(sce)$RankDiffZeros <- rowData(sce)$pct_dropout_by_counts -
rowData(sce)$RefRankZeros
colData(sce)$RefRankZeros <- ref.z.cell[rank(
colData(sce)$PctZero)]
colData(sce)$RankDiffZeros <- colData(sce)$PctZero -
colData(sce)$RefRankZeros
rowData(sce)$MeanRankVarDiff <- rowData(sce)$VarLogCPM -
ref.vars.rank[rowData(sce)$RankCounts]
rowData(sce)$MeanRankZerosDiff <- rowData(sce)$pct_dropout_by_counts -
ref.z.gene.rank[rowData(sce)$RankCounts]
sces[[name]] <- sce
}
ref.sce <- sces[[ref]]
sces[[ref]] <- NULL
features <- rowData(sces[[1]])
cells <- colData(sces[[1]])
if (length(sces) > 1) {
for (name in names(sces)[-1]) {
sce <- sces[[name]]
features <- rbindMatched(features, rowData(sce))
cells <- rbindMatched(cells, colData(sce))
}
}
features$Dataset <- factor(features$Dataset, levels = names(sces))
cells$Dataset <- factor(cells$Dataset, levels = names(sces))
features <- data.frame(features)
cells <- data.frame(cells)
means <- ggplot(features,
aes_string(x = "Dataset", y = "RankDiffMeanLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Rank difference mean ", log[2], "(CPM + 1)"))) +
ggtitle("Difference in mean expression") +
theme_minimal()
vars <- ggplot(features,
aes_string(x = "Dataset", y = "RankDiffVarLogCPM",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(expression(paste("Rank difference variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in variance") +
theme_minimal()
mean.var <- ggplot(features,
aes_string(x = "RankCounts", y = "MeanRankVarDiff",
colour = "Dataset", fill = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Expression rank") +
ylab(expression(paste("Difference in variance ", log[2],
"(CPM + 1)"))) +
ggtitle("Difference in mean-variance relationship") +
theme_minimal()
libs <- ggplot(cells,
aes_string(x = "Dataset", y = "RankDiffLibSize",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference library size")) +
ggtitle("Difference in library sizes") +
theme_minimal()
z.gene <- ggplot(features,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per gene") +
theme_minimal()
z.cell <- ggplot(cells,
aes_string(x = "Dataset", y = "RankDiffZeros",
colour = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_boxplot() +
scale_colour_manual(values = colours) +
ylab(paste("Rank difference percentage zeros")) +
ggtitle("Difference in zeros per cell") +
theme_minimal()
mean.zeros <- ggplot(features,
aes_string(x = "RankCounts", y = "MeanRankZerosDiff",
colour = "Dataset", fill = "Dataset")) +
geom_hline(yintercept = 0, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
xlab("Expression rank") +
ylab("Difference in percentage zeros per gene") +
ggtitle("Difference in mean-zeros relationship") +
theme_minimal()
means.qq <- ggplot(features,
aes_string(x = "RefRankMeanLogCPM", y = "MeanLogCPM",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab(expression(paste("Reference mean ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative mean ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked means") +
theme_minimal()
vars.qq <- ggplot(features,
aes_string(x = "RefRankVarLogCPM", y = "VarLogCPM",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab(expression(paste("Reference variance ", log[2], "(CPM + 1)"))) +
ylab(expression(paste("Alternative variance ", log[2], "(CPM + 1)"))) +
ggtitle("Ranked variances") +
theme_minimal()
libs.qq <- ggplot(cells,
aes_string(x = "RefRankLibSize", y = "total_counts",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab("Reference library size") +
ylab("Alternative library size") +
ggtitle("Ranked library sizes") +
theme_minimal()
z.gene.qq <- ggplot(features,
aes_string(x = "RefRankZeros",
y = "pct_dropout_by_counts",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per gene") +
theme_minimal()
z.cell.qq <- ggplot(cells,
aes_string(x = "RefRankZeros", y = "PctZero",
colour = "Dataset")) +
geom_abline(intercept = 0, slope = 1, colour = "red") +
geom_point(size = point.size, alpha = point.alpha) +
scale_colour_manual(values = colours) +
xlab("Reference percentage zeros") +
ylab("Alternative percentage zeros") +
ggtitle("Ranked percentage zeros per cell") +
theme_minimal()
if (fits) {
mean.var <- mean.var + geom_smooth()
mean.zeros <- mean.zeros + geom_smooth()
}
comparison <- list(Reference = ref.sce,
RowData = features,
ColData = cells,
Plots = list(Means = means,
Variances = vars,
MeanVar = mean.var,
LibrarySizes = libs,
ZerosGene = z.gene,
ZerosCell = z.cell,
MeanZeros = mean.zeros),
QQPlots = list(Means = means.qq,
Variances = vars.qq,
LibrarySizes = libs.qq,
ZerosGene = z.gene.qq,
ZerosCell = z.cell.qq))
return(comparison)
}
#' Make comparison panel
#'
#' Combine the plots from \code{compareSCEs} into a single panel.
#'
#' @param comp list returned by \code{\link{compareSCEs}}.
#' @param title title for the panel.
#' @param labels vector of labels for each of the seven plots.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compareSCEs(list(Splat = sim1, Simple = sim2))
#' panel <- makeCompPanel(comparison)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeCompPanel <- function(comp, title = "Comparison",
labels = c("Means", "Variance",
"Mean-variance relationship",
"Library size", "Zeros per gene",
"Zeros per cell",
"Mean-zeros relationship")) {
if (!requireNamespace("cowplot", quietly = TRUE)) {
stop("The `cowplot` package is required to make panels.")
}
checkmate::assertList(comp, any.missing = FALSE, len = 3)
checkmate::checkString(title)
checkmate::checkCharacter(labels, len = 7)
plots <- list(p1 = comp$Plots$Means, p2 = comp$Plots$Variances,
p3 = comp$Plots$MeanVar, p4 = comp$Plots$LibrarySizes,
p5 = comp$Plots$ZerosGene, p6 = comp$Plots$ZerosCell,
p7 = comp$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 2, 4, 5, 6))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p3 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.98,
fontface = "bold", size = 18) +
cowplot::draw_label(labels[1], 0.01, 0.95,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.0, 0.74, 0.5, 0.20) +
cowplot::draw_label(labels[2], 0.51, 0.95,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p2, 0.5, 0.74, 0.5, 0.20) +
cowplot::draw_label(labels[3], 0.01, 0.70,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p3, 0.0, 0.49, 0.5, 0.20) +
cowplot::draw_label(labels[4], 0.51, 0.70,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p4, 0.5, 0.49, 0.5, 0.20) +
cowplot::draw_label(labels[5], 0.01, 0.45,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p5, 0.0, 0.24, 0.5, 0.20) +
cowplot::draw_label(labels[6], 0.51, 0.45,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p6, 0.5, 0.24, 0.5, 0.20) +
cowplot::draw_label(labels[7], 0.01, 0.21,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p7, 0.0, 0.00, 0.5, 0.20) +
cowplot::draw_plot(plots$leg, 0.5, 0.00, 0.5, 0.20)
return(panel)
}
#' Make difference panel
#'
#' Combine the plots from \code{diffSCEs} into a single panel.
#'
#' @param diff list returned by \code{\link{diffSCEs}}.
#' @param title title for the panel.
#' @param labels vector of labels for each of the seven sections.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeDiffPanel(difference)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeDiffPanel <- function(diff, title = "Difference comparison",
labels = c("Means", "Variance", "Library size",
"Zeros per cell", "Zeros per gene",
"Mean-variance relationship",
"Mean-zeros relationship")) {
if (!requireNamespace("cowplot", quietly = TRUE)) {
stop("The `cowplot` package is required to make panels.")
}
checkmate::assertList(diff, any.missing = FALSE, len = 5)
checkmate::checkString(title)
checkmate::checkCharacter(labels, len = 7)
plots <- list(p1 = diff$Plots$Means, p2 = diff$QQPlots$Means,
p3 = diff$Plots$Variances, p4 = diff$QQPlots$Variances,
p5 = diff$Plots$MeanVar, p6 = diff$Plots$LibrarySizes,
p7 = diff$QQPlots$LibrarySizes, p8 = diff$Plots$ZerosCell,
p9 = diff$QQPlots$ZerosCell, p10 = diff$Plots$ZerosGene,
p11 = diff$QQPlots$ZerosGene, p12 = diff$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 3, 6, 8, 10))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p5 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.98,
fontface = "bold", size = 18) +
cowplot::draw_label(labels[1], 0.0, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.0, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p2, 0.0, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[2], 0.21, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p3, 0.21, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p4, 0.21, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[6], 0.0, 0.30,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p5, 0.0, 0.0, 0.38, 0.29) +
cowplot::draw_label(labels[3], 0.41, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p6, 0.41, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p7, 0.41, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[4], 0.61, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p8, 0.61, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p9, 0.61, 0.32, 0.18, 0.29) +
cowplot::draw_label(labels[7], 0.41, 0.30,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p12, 0.41, 0.0, 0.38, 0.29) +
cowplot::draw_label(labels[5], 0.81, 0.94,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p10, 0.81, 0.64, 0.18, 0.29) +
cowplot::draw_plot(plots$p11, 0.81, 0.32, 0.18, 0.29) +
cowplot::draw_plot(plots$leg, 0.81, 0.0, 0.2, 0.29)
return(panel)
}
#' Make overall panel
#'
#' Combine the plots from \code{compSCEs} and \code{diffSCEs} into a
#' single panel.
#'
#' @param comp list returned by \code{\link{compareSCEs}}.
#' @param diff list returned by \code{\link{diffSCEs}}.
#' @param title title for the panel.
#' @param row.labels vector of labels for each of the seven rows.
#'
#' @return Combined panel plot
#'
#' @examples
#' \dontrun{
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' comparison <- compSCEs(list(Splat = sim1, Simple = sim2))
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' panel <- makeOverallPanel(comparison, difference)
#' }
#'
#' @importFrom ggplot2 theme element_blank
#' @export
makeOverallPanel <- function(comp, diff, title = "Overall comparison",
row.labels = c("Means", "Variance",
"Mean-variance relationship",
"Library size", "Zeros per cell",
"Zeros per gene",
"Mean-zeros relationship")) {
if (!requireNamespace("cowplot", quietly = TRUE)) {
stop("The `cowplot` package is required to make panels.")
}
checkmate::assertList(comp, any.missing = FALSE, len = 3)
checkmate::assertList(diff, any.missing = FALSE, len = 5)
checkmate::checkString(title)
checkmate::checkCharacter(row.labels, len = 7)
plots <- list(p1 = comp$Plots$Means, p2 = diff$Plots$Means,
p3 = diff$QQPlots$Means, p4 = comp$Plots$Variances,
p5 = diff$Plots$Variances, p6 = diff$QQPlots$Variances,
p7 = comp$Plots$MeanVar, p8 = diff$Plots$MeanVar,
p9 = comp$Plots$LibrarySizes, p10 = diff$Plots$LibrarySizes,
p11 = diff$QQPlots$LibrarySizes, p12 = comp$Plots$ZerosCell,
p13 = diff$Plots$ZerosCell, p14 = diff$QQPlots$ZerosCell,
p15 = comp$Plots$ZerosGene, p16 = diff$Plots$ZerosGene,
p17 = diff$QQPlots$ZerosGene, p18 = comp$Plots$MeanZeros,
p19 = diff$Plots$MeanZeros)
# Remove titles and legends
for (plot in names(plots)) {
plots[[plot]] <- plots[[plot]] + theme(legend.position = "none",
plot.title = element_blank())
}
# Remove x-axis title from some plots
for (plot in paste0("p", c(1, 2, 4, 5, 9, 10, 12, 13, 15, 16))) {
plots[[plot]] <- plots[[plot]] + theme(axis.title.x = element_blank())
}
plots$leg <- cowplot::get_legend(plots$p7 +
theme(legend.position = "bottom"))
panel <- cowplot::ggdraw() +
cowplot::draw_label(title, 0.5, 0.995,
fontface = "bold", size = 18) +
cowplot::draw_label(row.labels[1], 0.01, 0.985,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p1, 0.00, 0.86, 0.32, 0.12) +
cowplot::draw_plot(plots$p2, 0.34, 0.86, 0.32, 0.12) +
cowplot::draw_plot(plots$p3, 0.67, 0.86, 0.32, 0.12) +
cowplot::draw_label(row.labels[2], 0.01, 0.845,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p4, 0.00, 0.72, 0.32, 0.12) +
cowplot::draw_plot(plots$p5, 0.34, 0.72, 0.32, 0.12) +
cowplot::draw_plot(plots$p6, 0.67, 0.72, 0.32, 0.12) +
cowplot::draw_label(row.labels[3], 0.01, 0.705,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p7, 0.00, 0.58, 0.49, 0.12) +
cowplot::draw_plot(plots$p8, 0.51, 0.58, 0.49, 0.12) +
cowplot::draw_label(row.labels[4], 0.01, 0.56,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p9, 0.00, 0.44, 0.32, 0.12) +
cowplot::draw_plot(plots$p10, 0.34, 0.44, 0.32, 0.12) +
cowplot::draw_plot(plots$p11, 0.67, 0.44, 0.32, 0.12) +
cowplot::draw_label(row.labels[5], 0.01, 0.425,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p12, 0.00, 0.30, 0.32, 0.12) +
cowplot::draw_plot(plots$p13, 0.34, 0.30, 0.32, 0.12) +
cowplot::draw_plot(plots$p14, 0.67, 0.30, 0.32, 0.12) +
cowplot::draw_label(row.labels[6], 0.01, 0.285,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p15, 0.00, 0.16, 0.32, 0.12) +
cowplot::draw_plot(plots$p16, 0.34, 0.16, 0.32, 0.12) +
cowplot::draw_plot(plots$p17, 0.67, 0.16, 0.32, 0.12) +
cowplot::draw_label(row.labels[7], 0.01, 0.145,
fontface = "bold", hjust = 0, vjust = 0) +
cowplot::draw_plot(plots$p18, 0.00, 0.02, 0.49, 0.12) +
cowplot::draw_plot(plots$p19, 0.51, 0.02, 0.49, 0.12) +
cowplot::draw_plot(plots$leg, 0.00, 0.00, 1.00, 0.02)
return(panel)
}
#' Summarise diffSCESs
#'
#' Summarise the results of \code{\link{diffSCEs}}. Calculates the Median
#' Absolute Deviation (MAD), Mean Absolute Error (MAE) and Root Mean Squared
#' Error (RMSE) for the various properties and ranks them.
#'
#' @param diff Output from \code{\link{diffSCEs}}
#'
#' @return data.frame with MADs, MAEs, RMSEs, scaled statistics and ranks
#' @examples
#' sim1 <- splatSimulate(nGenes = 1000, batchCells = 20)
#' sim2 <- simpleSimulate(nGenes = 1000, nCells = 20)
#' difference <- diffSCEs(list(Splat = sim1, Simple = sim2), ref = "Simple")
#' summary <- summariseDiff(difference)
#' head(summary)
#' @export
summariseDiff <- function(diff) {
datasets <- unique(diff$ColData$Dataset)
rowData.mads <- sapply(datasets, function(dataset) {
df <- diff$RowData[diff$RowData$Dataset == dataset, ]
mean <- median(abs(df$RankDiffMeanLogCPM))
var <- median(abs(df$RankDiffVarLogCPM))
zeros <- median(abs(df$RankDiffZeros))
mean.var <- median(abs(df$MeanRankVarDiff))
mean.zeros <- median(abs(df$MeanRankZerosDiff))
return(c(Mean = mean, Variance = var, ZerosGene = zeros,
MeanVar = mean.var, MeanZeros = mean.zeros))
})
rowData.mads.z <- t(scale(t(rowData.mads)))
colData.mads <- sapply(datasets, function(dataset) {
df <- diff$ColData[diff$ColData$Dataset == dataset, ]
lib.size <- median(abs(df$RankDiffLibSize))
zeros <- median(abs(df$RankDiffZeros))
return(c(LibSize = lib.size, ZerosCell = zeros))
})
colData.mads.z <- t(scale(t(colData.mads)))
mads <- data.frame(Dataset = datasets, t(rowData.mads), t(colData.mads))
mads.z <- data.frame(Dataset = datasets, t(rowData.mads.z),
t(colData.mads.z))
rowData.ranks <- matrixStats::rowRanks(rowData.mads)
colData.ranks <- matrixStats::rowRanks(colData.mads)
ranks.mads <- data.frame(Dataset = datasets, t(rowData.ranks),
t(colData.ranks))
colnames(ranks.mads) <- paste0(colnames(mads), "Rank")
rowData.maes <- sapply(datasets, function(dataset) {
df <- diff$RowData[diff$RowData$Dataset == dataset, ]
mean <- mean(abs(df$RankDiffMeanLogCPM))
var <- mean(abs(df$RankDiffVarLogCPM))
zeros <- mean(abs(df$RankDiffZeros))
mean.var <- mean(abs(df$MeanRankVarDiff))
mean.zeros <- mean(abs(df$MeanRankZerosDiff))
return(c(Mean = mean, Variance = var, ZerosGene = zeros,
MeanVar = mean.var, MeanZeros = mean.zeros))
})
rowData.maes.z <- t(scale(t(rowData.maes)))
colData.maes <- sapply(datasets, function(dataset) {
df <- diff$ColData[diff$ColData$Dataset == dataset, ]
lib.size <- mean(abs(df$RankDiffLibSize))
zeros <- mean(abs(df$RankDiffZeros))
return(c(LibSize = lib.size, ZerosCell = zeros))
})
colData.maes.z <- t(scale(t(colData.maes)))
maes <- data.frame(Dataset = datasets, t(rowData.maes), t(colData.maes))
maes.z <- data.frame(Dataset = datasets, t(rowData.maes.z),
t(colData.maes.z))
rowData.ranks <- matrixStats::rowRanks(rowData.maes)
colData.ranks <- matrixStats::rowRanks(colData.maes)
ranks.maes <- data.frame(Dataset = datasets, t(rowData.ranks), t(colData.ranks))
colnames(ranks.maes) <- paste0(colnames(mads), "Rank")
rowData.rmse <- sapply(datasets, function(dataset) {
df <- diff$RowData[diff$RowData$Dataset == dataset, ]
mean <- sqrt(mean(df$RankDiffMeanLogCPM ^ 2))
var <- sqrt(mean(df$RankDiffVarLogCPM ^ 2))
zeros <- sqrt(mean(df$RankDiffZeros ^ 2))
mean.var <- sqrt(mean(df$MeanRankVarDiff ^ 2))
mean.zeros <- sqrt(mean(df$MeanRankZerosDiff ^ 2))
return(c(Mean = mean, Variance = var, ZerosGene = zeros,
MeanVar = mean.var, MeanZeros = mean.zeros))
})
rowData.rmse.z <- t(scale(t(rowData.rmse)))
colData.rmse <- sapply(datasets, function(dataset) {
df <- diff$ColData[diff$ColData$Dataset == dataset, ]
lib.size <- sqrt(mean(df$RankDiffLibSize ^ 2))
zeros <- sqrt(mean(df$RankDiffZeros ^ 2))
return(c(LibSize = lib.size, ZerosCell = zeros))
})
colData.rmse.z <- t(scale(t(colData.rmse)))
rmse <- data.frame(Dataset = datasets, t(rowData.rmse), t(colData.rmse))
rmse.z <- data.frame(Dataset = datasets, t(rowData.rmse.z),
t(colData.rmse.z))
rowData.ranks <- matrixStats::rowRanks(rowData.rmse)
colData.ranks <- matrixStats::rowRanks(colData.rmse)
ranks.rmse <- data.frame(Dataset = datasets, t(rowData.ranks),
t(colData.ranks))
colnames(ranks.rmse) <- paste0(colnames(rmse), "Rank")
mads <- stats::reshape(mads, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(mads)[2:8], v.names = "MAD")
mads.z <- stats::reshape(mads.z, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(mads)[2:8],
v.names = "MADScaled")
ranks.mads <- stats::reshape(ranks.mads, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(ranks.mads)[2:8],
v.names = "Rank")
maes <- stats::reshape(maes, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(maes)[2:8], v.names = "MAE")
maes.z <- stats::reshape(maes.z, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(mads)[2:8],
v.names = "MAEScaled")
ranks.maes <- stats::reshape(ranks.maes, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(ranks.maes)[2:8],
v.names = "Rank")
rmse <- stats::reshape(rmse, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(mads)[2:8], v.names = "RMSE")
rmse.z <- stats::reshape(rmse.z, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(mads)[2:8],
v.names = "RMSEScaled")
ranks.rmse <- stats::reshape(ranks.rmse, varying = 2:8, direction = "long",
idvar = "Dataset", timevar = "Statistic",
times = colnames(ranks.rmse)[2:8],
v.names = "Rank")
summary <- data.frame(mads, MADScaled = mads.z$MADScaled,
MADRank = ranks.mads$Rank,
MAE = maes$MAE, MAEScaled = maes.z$MAEScaled,
MAERank = ranks.maes$Rank,
RMSE = rmse$RMSE, RMSEScaled = rmse.z$RMSEScaled,
RMSERank = ranks.rmse$Rank)
row.names(summary) <- NULL
return(summary)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.