data("count_table", package = "ScreenR")
data("annotation_table", package = "ScreenR")
data <- count_table
annotaion <- annotation_table
groups <- factor(c(
"T1/T2", "T1/T2", "Treated", "Treated", "Treated",
"Control", "Control", "Control", "Treated", "Treated", "Treated",
"Control", "Control", "Control"
))
palette <- c(
"#1B9E75", "#1B9E75", "#D95F02", "#D95F02", "#D95F02",
"#7570B3", "#7570B3", "#7570B3", "#E7298A", "#E7298A", "#E7298A",
"#66A61E", "#66A61E", "#66A61E"
)
create_test_object <- function() {
data <- data %>%
dplyr::filter(Barcode != "*")
colnames(data) <- c(
"Barcode", "T1", "T2", "Time3_TRT_A", "Time3_TRT_B", "Time3_TRT_C",
"Time3_A", "Time3_B", "Time3_C", "Time4_TRT_A", "Time4_TRT_B",
"Time4_TRT_C", "Time4_A", "Time4_B", "Time4_c"
)
obj <- create_screenr_object(
table = data,
annotation = annotaion, groups = groups, replicates = c("")
)
obj <- normalize_data(obj)
obj <- compute_data_table(obj)
obj@data_table <- obj@data_table %>%
dplyr::filter(Gene %in% paste0("Gene_", seq(1, 10)))
obj@normalized_count_table <- obj@normalized_count_table %>%
dplyr::filter(Barcode %in% obj@data_table$Barcode)
obj@count_table <- obj@count_table %>%
dplyr::filter(Barcode %in% obj@data_table$Barcode)
obj@annotation_table <- obj@annotation_table %>%
dplyr::filter(Barcode %in% obj@data_table$Barcode)
return(obj)
}
test_that("filter_by_slope", {
library(tibble)
object <- create_test_object()
data <- filter_by_slope(
screenR_Object = object,
genes = c("Gene_1", "Gene_300"),
group_var_treatment = c("T1", "T2", "TRT"),
group_var_control = c("T1", "T2", "Time3", "Time4"),
slope_treatment = 1
)
expect_equal(class(data)[1], "tbl_df")
})
test_that("filter_by_slope", {
library(tibble)
object <- create_test_object()
data <- filter_by_slope(
screenR_Object = object,
genes = c("Gene_1", "Gene_300"),
group_var_treatment = c("T1", "T2", "TRT"),
group_var_control = c("T1", "T2", "Time3", "Time4"),
slope_treatment = 1,
)
expect_equal(class(data)[1], "tbl_df")
})
test_that("filter_by_slope_fold", {
library(tibble)
object <- create_test_object()
data_p <- filter_by_slope(
screenR_Object = object,
genes = c("Gene_1", "Gene_2", "Gene_3", "Gene_4", "Gene_5",
"Gene_6", "Gene_7", "Gene_8", "Gene_9", "Gene_10",
"Gene_11", "Gene_12", "Gene_13", "Gene_14", "Gene_15"),
group_var_treatment = c("T1", "T2", "TRT"),
group_var_control = c("T1", "T2", "Time3", "Time4"),
slope_treatment = NULL, slope_control = NULL,
)
expect_true(all(abs(data_p$slope_treatment) > abs(data_p$slope_control)))
})
test_that("filter_by_variance", {
library(tibble)
object <- create_test_object()
matrix_model <- model.matrix(~ object@groups)
colnames(matrix_model) <- c("Control", "T1_T2", "Treated")
contrast <- limma::makeContrasts(Treated - Control, levels = matrix_model)
data <- filter_by_variance(
genes = c("Gene_320"), screenR_Object = object,
matrix_model = matrix_model, contrast = contrast
)
expect_equal(class(data)[1], "tbl_df")
})
test_that("remove_all_zero_row", {
library(tibble)
object <- get0("object", envir = asNamespace("ScreenR"))
object <- remove_all_zero_row(object)
n_row <- nrow(object@count_table)
expect_equal(n_row, 5317)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.