R/DEU_wrappers.R

Defines functions DEXSeqWrapper diffSpliceWrapper diffSpliceDGEWrapper

Documented in DEXSeqWrapper diffSpliceDGEWrapper diffSpliceWrapper

#' DEUwrappers
#'
#' Wrappers around commonly-used DEU methods
#' (\code{\link[edgeR]{diffSpliceDGE}}, \code{\link[DEXSeq]{DEXSeq}} and an
#' improved version of \code{\link[limma]{diffSplice}}
#'
#' @param se A bin-wise SummarizedExperiment as produced by
#' \code{\link{countFeatures}}
#' @param design A formula (using columns of `colData(se)`) or (for
#' `diffSpliceWrapper` or `diffSpliceDGEWrapper` only) a model.matrix.
#' @param reducedModel A reduced formula (applicable only to `DEXSeqWrapper`).
#' @param coef The coefficient to be tested (ignored for `DEXSeqWrapper`).
#' @param QLF Logical; whether to use edgeR's quasi-likelihood negative
#' binomial (applicable only to `diffSpliceDGEWrapper`).
#' @param robust Logical; whether to use robust fitting for the dispersion
#' trend (ignored for `DEXSeqWrapper`).
#' @param countFilter Logical; whether to filter out low-count bins (ignored
#' for `DEXSeqWrapper`).
#' @param excludeTypes A vector of bin types to ignore for testing. To test
#' for any kind of differential usage, leave empty. To test for differential
#' UTR usage, use `excludeTypes=c("CDS","non-coding")` (or see
#'  \code{\link{geneLevelStats}} for more options).
#'
#' @return The `se` object with additional rowData columns contain bin (i.e.
#' exon) -level statistics, and a metadata slot containing gene level p-values.
#'
#' @importFrom edgeR DGEList calcNormFactors glmQLFit glmFit diffSpliceDGE
#' @importFrom edgeR filterByExpr estimateDisp
#' @importFrom stats p.adjust setNames
#' @importFrom matrixStats rowMins
#' @aliases DEUwrappers
#' @export
#' @rdname DEUwrappers
#' @examples
#' library(SummarizedExperiment)
#' data(example_bin_se)
#' se <- diffSpliceWrapper(example_bin_se, ~condition)
#' head(rowData(se))
diffSpliceDGEWrapper <- function(se, design, coef=NULL, QLF=TRUE, robust=TRUE,
                                  countFilter=TRUE, excludeTypes=NULL){
  se <- .checkSE(se)
  if(is(design, "formula"))
    design <- model.matrix(design, data=as.data.frame(colData(se)))
  if(is.null(coef)){
    coef <- ifelse(is.null(colnames(design)), ncol(design),
                   rev(colnames(design))[1])
    message("Testing coefficient ", coef)
  }
  if(countFilter) se <- se[filterByExpr(assays(se)$counts, design=design),]
  dds <- calcNormFactors(DGEList(assays(se)$counts))
  dds <- estimateDisp(dds,design)
  if(QLF){
    fit <- glmQLFit(dds, design, robust=robust)
  }else{
    fit <- glmFit(dds, design, robust=robust)
  }
  res <- diffSpliceDGE(fit, coef=coef, geneid=rowData(se)$gene,
                       exonid=row.names(se))
  se <- se[names(res$exon.p.value),]
  co <- res$coefficients
  if(!is.null(dim(co))) co <- co[,coef]
  if(length(coef)>1 && !is.null(dim(res$exon.p.value))){
    rowData(se) <- cbind(rowData(se), co)
    pv <- res$exon.p.value[,coef]
    colnames(pv) <- paste0(colnames(pv),".p.value")
    rowData(se)$coefficient <- mapply(i=seq_len(nrow(co)),
                                      j=apply(pv,1,which.min),
                                      FUN=function(i,j) co[i,j])
    rowData(se) <- cbind(rowData(se), pv)
    rowData(se)$bin.p.value <- ep <- rowMins(pv)
  }else{
    rowData(se)$coefficient <- co
    rowData(se)$bin.p.value <- ep <- res$exon.p.value
  }

  if(!is.null(excludeTypes)) ep[rowData(se)$type %in% excludeTypes] <- 1
  rowData(se)$bin.FDR <- p.adjust(ep)

  geneLevelStats(se, coef="coefficient", excludeTypes=excludeTypes)
}

#' @param improved Logical; whether to use \code{\link{diffSplice2}} instead
#' of the original \code{\link[limma]{diffSplice}} (default TRUE).
#' @importFrom stats model.matrix
#' @importFrom limma lmFit voom diffSplice
#' @importFrom edgeR DGEList calcNormFactors filterByExpr
#' @export
#' @rdname DEUwrappers
diffSpliceWrapper <- function(se, design, coef=NULL, robust=TRUE,
                               improved=TRUE, countFilter=TRUE,
                               excludeTypes=NULL){
  se <- .checkSE(se)
  if(is(design, "formula"))
    design <- model.matrix(design, data=as.data.frame(colData(se)))
  if(is.null(coef)){
    coef <- ifelse(is.null(colnames(design)), ncol(design),
                   rev(colnames(design))[1])
    message("Testing coefficient ", coef)
  }

  if(countFilter) se <- se[filterByExpr(assays(se)$counts, design=design),]
  dds <- calcNormFactors(DGEList(assays(se)$counts))
  dds <- voom(dds, design)
  dds <- lmFit(dds, design)

  if(improved){
    res <- diffSplice2(dds, geneid=rowData(se)$gene, exonid=row.names(se),
                       robust=robust)
  } else{
    res <- diffSplice(dds, geneid=rowData(se)$gene, exonid=row.names(se),
                      robust=robust)
  }

  se <- se[row.names(res$p.value),]

  tmp <- rowData(se)[,setdiff(colnames(rowData(se)),
                    c(colnames(res$coefficients),"bin.p.value","coefficient"))]
  if(length(coef)>1){
    co <- res$coefficients[,coef]
    pv <- res$p.value[,coef]
    colnames(pv) <- paste0(colnames(pv),"p.value")
    tmp$coefficient <- mapply(i=seq_len(nrow(co)), j=apply(pv,1,which.min),
                                      FUN=function(i,j) co[i,j])
    tmp <- cbind(tmp, co, pv)
    ep <- rowMins(pv)
  }else{
    tmp$coefficient <- res$coefficients[,coef]
    ep <- res$p.value[,coef]
  }
  tmp$bin.p.value <- ep
  rowData(se) <- tmp
  rowData(se)$bin.FDR <- p.adjust(ep)

  geneLevelStats(se, coef="coefficient", excludeTypes=excludeTypes)
}

#' @param ... Further arguments (passed to `testForDEU` and
#' `estimateExonFoldChanges`) of `DEXSeq`. Can for instance be used to enable 
#' multithreading, by passing `BPPARAM=BiocParallel::MulticoreParam(ncores)`.
#' @importFrom DEXSeq DEXSeqDataSet estimateSizeFactors estimateDispersions
#' @importFrom DEXSeq estimateExonFoldChanges DEXSeqResults perGeneQValue
#' @importFrom DEXSeq testForDEU
#' @export
#' @rdname DEUwrappers
DEXSeqWrapper <- function(se, design=~sample+exon+condition:exon,
                           reducedModel=~sample+exon, excludeTypes=NULL, ...){
  if(!("exon" %in% labels(terms(design))))
    stop("For DEXSeq, the formula should include the extra 'sample' and ",
         "'exon' terms.\nFor instance, if you wanted to test for an effect ",
         "of the variable 'condition' on bin usage, you would use:\n",
         "~sample+exon+condition:exon")
  se <- .checkSE(se)
  e <- floor(as.matrix(assays(se)$counts))
  e <- matrix(as.integer(e), nrow=nrow(e))
  dds <- DEXSeqDataSet(e, sampleData=as.data.frame(colData(se)),
                         design=design, featureRanges=rowRanges(se),
                         featureID=row.names(se), groupID=rowData(se)$gene)
  dds <- estimateSizeFactors( dds )
  dds <- estimateDispersions( dds )
  dds <- testForDEU( dds, reducedModel=reducedModel,...)
  vars <- setdiff(labels(terms(design)), labels(terms(reducedModel)))
  vars <- gsub(":exon|exon:", "", grep(":exon|exon:", vars, value=TRUE))
  dds <- estimateExonFoldChanges( dds, fitExpToVar=vars, ... )
  res <- DEXSeqResults( dds )

  rowData(se)$log2fc <- res[[rev(grep("log2fold",names(res)))[1]]]
  rowData(se)$exonBaseMean <- res$exonBaseMean
  rowData(se)$bin.p.value <- res$pvalue

  if(!is.null(excludeTypes))
    res$pvalue[rowData(se)$type %in% excludeTypes] <- 1
  rowData(se)$bin.FDR <- p.adjust(res$pvalue)

  message("Generating gene-level stats...")

  d <- DataFrame(bin.pval=res$pvalue, coef=rowData(se)$log2fc,
                 gene=rowData(se)$gene, width=width(se),
                 meanLogDensity=rowData(se)$meanLogDensity,
                 logDensityRatio=rowData(se)$logDensityRatio)
  if("gene" %in% colnames(rowData(se)))
    d$gene_name <- rowData(se)$gene
  if("gene_name" %in% colnames(rowData(se)))
    d$gene_name <- rowData(se)$gene_name
  
  metadata(se)$geneLevel <- .geneLevelStats(d=d, gene.qval=perGeneQValue(res))
  se
}
ETHZ-INS/diffUTR documentation built on Nov. 3, 2024, 6:26 p.m.