#' Individual single sample analysis
#'
#' The Individualcomparison function will perform individual sample comparison analysis in reference to a control sample or group of samples, with the results are expressed “at the module level” as percent of genes increased or decreased.
#'
#' - Expression matrix and sample annotation file are required in order to perform this analysis.
#' - The sample annotation file must be loaded using a specific name = "sample_info".
#' - The names of the columns for the conditions used in the analysis must be specified
#' - The default cutoff is set at FC =1.5 and DIFF =10
#' @import ExperimentHub SummarizedExperiment testthat ComplexHeatmap ggplot2 matrixStats gtools reshape2 preprocessCore randomcoloR V8 limma
#' @importFrom SummarizedExperiment rowRanges
#' @importFrom SummarizedExperiment start
#' @importFrom SummarizedExperiment end
#' @param data.matrix Matrix of normalized expression data (not Log2 transformed).Row names are required to be valid Gene Symbols. Columns names are sample IDs
#' or data.matrix can also be given a summarizedexperiment object and assigned data.matrix and sample_info accordingly from the object.
#' @param sample_info A dataframe with sample annotation.
#' @param FC Numeric value specifying the foldchange cut off that will be applied to define increase or decrease of a given transcript compared to the reference group
#' @param DIFF Numeric value specifying the difference cut off that will be applied to define increase or decrease of a given transcript compared to the reference group
#' @param Group_column Character vector identical to the column name from sample_info dataframe that specifies group annotation used for the analysis
#' @param Ref_group Character vector specifying value within the group column that will be used as Reference group
#' @param SummarizedExperiment Output data as the SummarizedExperiment class when SummarizedExperiment = TRUE
#' @return A matrix of the percentahe of module response at individual level and SummarizedExperiment object
#' @examples
#'## data could be downloaded from ExperimentHub("GSE13015")
#'library(ExperimentHub)
#'library(SummarizedExperiment)
#'dat = ExperimentHub()
#'res = query(dat , "GSE13015")
#'GSE13015 = res[["EH5429"]]
#'Individual_df = Individualcomparison(GSE13015, sample_info = NULL,
#' FC = 1.5, DIFF = 10, Group_column = "Group_test",
#' Ref_group = "Control")
#' @author Darawan Rinchai <drinchai@gmail.com>
#' @export
Individualcomparison <- function(data.matrix,
sample_info = NULL,
FC = NULL,
DIFF = NULL,
Group_column = NULL,
Ref_group = NULL,
SummarizedExperiment = TRUE){
if(is(data.matrix, "SummarizedExperiment")){
data_matrix = assay(data.matrix)
}else{
data_matrix = data.matrix
}
#Sample information
if (is.null(sample_info)) {
sample_info = data.frame(colData(data.matrix))
}
else {
sample_info = sample_info
}
### Prepare expression matrix with module list
df1=Module_listGen3 # This is module list annotation table
df2=data.frame(data_matrix) # expression data (from your own datasets or from step 1)
df2$Gene = rownames(df2)
#Annotate gene module to expression matrix
df.mod = merge(df1,df2,by="Gene",all=FALSE) # match df1 and df2 by Gene symbol
rownames(df.mod) = df.mod$Module_gene
dat.mod.func.Gen3 = df.mod[,c(1:5)]
dat.mod.Gen3 = df.mod[,-c(1:5)]
############################
#prepare data for analysis
###########
df_raw = as.matrix(dat.mod.Gen3) # replace "dat.mod.Gen3" with data_matrix in raw expression data
mod_func = dat.mod.func.Gen3 # repleace "mod_func" with Gene module annotation table
#### make sure that expression matrix and sample information are the same order
df_raw = df_raw[,rownames(sample_info)]
colnames(df_raw) == rownames(sample_info)
# Difference
Diff.mod.ind.sin <- df_raw[,]
Diff.mod.ind.sin [,] <- NA
k=1
for (k in 1:nrow(df_raw)) {
signature = rownames(df_raw)[k]
test.table <- sample_info
test.table$scores <- df_raw[k,]
T4 <- test.table
T3 <- test.table[test.table[, Group_column] == Ref_group,]
Diff.mod.ind.sin[k,] <- (T4$scores-(mean(T3$scores)))
}
Diff.mod.ind.sin <- as.data.frame(Diff.mod.ind.sin)
## fold change
FC.mod.ind.sin <- df_raw[,]
FC.mod.ind.sin [,] <- NA
for (k in 1:nrow(df_raw)) {
signature = rownames(df_raw)[k]
test.table <- sample_info
test.table$scores <- df_raw[k,]
T4 <- test.table
T3 <- test.table[test.table[, Group_column] == Ref_group,]
FC.mod.ind.sin[k,] <- foldchange(T4$scores,mean(T3$scores))
}
FC.mod.ind.sin <- as.data.frame(FC.mod.ind.sin)
#############################################
# Calculate percentage of response ##
############################################
if (is.null(FC)) {
FC_cutoff = 1.5
}
else {
FC_cutoff = as.numeric(FC)
}
if (is.null(DIFF)) {
DIFF_cutoff = 10
}
else {
DIFF_cutoff = as.numeric(DIFF)
}
#logical check ##
mod.up <- (FC.mod.ind.sin > FC_cutoff) + (Diff.mod.ind.sin > DIFF_cutoff) == 2 # TRUE Up gene, Both TRUE
mod.down <- (FC.mod.ind.sin < (FC_cutoff*-1)) + (Diff.mod.ind.sin < (DIFF_cutoff*-1)) == 2 # TRUE down gene, Both TRUE
### prepare gene annotation table
Gene.matrix = mod_func[rownames(mod.up),]
#####UP GENE#######
pect_df <- data.frame(Module = row.names(mod.up), mod.up,genes=0) # create a new blank table
pect_df [,] <- NA
pect_df <- pect_df [-c(2:nrow(pect_df)),]
for (i in 1:length(unique(Gene.matrix$Module))){ # length of module
module <- unique(as.character(Gene.matrix$Module))[i] # look for only unique module
sums_up <- colSums(mod.up[Gene.matrix$Module==module,]) # sum upgene of each column by module
sums_down <- colSums(mod.down[Gene.matrix$Module==module,])
sums = sums_up-sums_down
genes <- nrow(Gene.matrix[Gene.matrix$Module==module,]) # sum number of gene in each module
pect_df <- rbind(pect_df,c(module,sums,genes)) # paste result into a new fake table
}
pect_df <- pect_df [-1,]
rownames(pect_df) <- pect_df$Module
pect_df$Module <- NULL
pect_df.cal <- pect_df
pect_df <- as.data.frame(lapply(pect_df, as.numeric)) # convert data frame to be numberic
pect_df <- (pect_df/pect_df$genes)*100
rownames(pect_df) <-rownames(pect_df.cal)
pect_df <- pect_df[,-ncol(pect_df)]
Individual_df = pect_df
sample_info = sample_info[colnames(Individual_df),]
colData = DataFrame(row.names=rownames(sample_info),
SampleID =rownames(sample_info),
Group_test=sample_info[, Group_column])
Individual_res <- SummarizedExperiment(assays=SimpleList(Percent=as.matrix(Individual_df)),
colData=colData)
if (SummarizedExperiment == "TRUE") {
Individual_df = Individual_res
}
else {
Individual_df = Individual_df
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.