#' Group comparison analysis
#'
#' The Groupcomparison function will perform group comparison analyses and the results are expressed “at the module level” as percent of genes increased or decreased.
#' - Expression matrix and sample annotation files are required to perform this analysis.
#' - The sample annotation file must be loaded using a specific name = "sample_info".
#' - The names of the columns for the conditions used in the analysis must be specified.
#' @import ExperimentHub testthat ComplexHeatmap ggplot2 matrixStats gtools reshape2 preprocessCore randomcoloR V8 limma
#' @param data.matrix Matrix of normalized expression data (not Log2 transformed).Row names are required to be valid Gene Symbols. Columns names are sample IDs
#' or data.matrix can also be given a summarizedexperiment object and assigned data.matrix and sample_info accordingly from the object.
#' @param sample_info A dataframe with sample annotation. Sample_info dataframe requires two columns: 1) a column specifying Sample ID (exactly matching the Sample ID of data.matrix)
#' and 2) a column specifying group names
#' @param FC Numeric value specifying the foldchange cut off that will be applied to define increase or decrease of a given transcript compared to the reference group
#' @param pval Numeric value specifying p-value cut off or False discovery rate when FDR = TRUE
#' @param FDR Logical operator to specify whether False discovery rate cut off (using BH-method) should be used
#' @param Group_column Character vector identical to the column name from sample_info dataframe that specifies group annotation used for the analysis
#' @param Test_group Character vector specifying values within the group column (Group_column) that will be used as Test group (samples considered as cases or “intervention” group).
#' @param Ref_group Character vector specifying value within the group column (Group_column) that will be used as Reference group
#' @param SummarizedExperiment Output data as the SummarizedExperiment class when SummarizedExperiment = TRUE
#' @return A matrix of the percentahe of module response in each group comparison
#' @examples
#'## data could be downloaded from ExperimentHub("GSE13015")
#'library(ExperimentHub)
#'library(SummarizedExperiment)
#'dat = ExperimentHub()
#'res = query(dat , "GSE13015")
#'GSE13015 = res[["EH5429"]]
#'Group_df = Groupcomparison(GSE13015, sample_info = NULL,
#' FC = 0, pval = 0.1, FDR = TRUE, Test_group = "Sepsis",
#' Group_column = "Group_test", Ref_group = "Control")
#' @author Darawan Rinchai <drinchai@gmail.com>
#' @export
Groupcomparison <- function(data.matrix,
sample_info = NULL,
FC = NULL,
pval = NULL ,
FDR = TRUE,
Group_column = NULL,
Test_group = "Test_group",
Ref_group = "Control",
SummarizedExperiment = TRUE){
if(is(data.matrix, "SummarizedExperiment")){
data_matrix = assay(data.matrix)
}else{
data_matrix = data.matrix
}
#Sample information
if (is.null(sample_info)) {
sample_info = data.frame(colData(data.matrix))
}
else {
sample_info = sample_info
}
### Prepare expression matrix with module list
df1=Module_listGen3 # This is module list annotation table
df2=data.frame(data_matrix) # expression data (from your own datasets or from step 1)
df2$Gene = rownames(df2)
#Annotate gene module to expression matrix
df.mod = merge(df1,df2,by="Gene",all=FALSE) # match df1 and df2 by Gene symbol
rownames(df.mod) = df.mod$Module_gene
dat.mod.func.Gen3 = df.mod[,c(1:5)]
dat.mod.Gen3 = df.mod[,-c(1:5)]
#prepare data for analysis
###########
df_raw = as.matrix(dat.mod.Gen3) # replace "dat.mod.Gen3" with data_matrix in raw expression data
mod_func = dat.mod.func.Gen3 # repleace "mod_func" with Gene module annotation table
#### make sure that expression matrix and sample information are the same order
df_raw = df_raw[,rownames(sample_info)]
colnames(df_raw) == rownames(sample_info)
#############################################
# Statistic analysis ##
############################################
dat_log2 <- as.matrix(log(df_raw+1,2)) # tranformed data to log 2
## prepare entry table
########################
##### T test
########################
tt_pval = data.frame(matrix(ncol = length(Test_group), nrow = nrow(dat_log2)))
colnames(tt_pval) = Test_group
rownames(tt_pval) = rownames(dat_log2)
# Check if rownames of sample_info and colnames of dat_log2 are in the same order before running loop below
rownames(sample_info) == colnames(dat_log2)
for (k in 1:nrow(dat_log2)) {
signature = rownames(dat_log2)[k]
test.table <- sample_info
test.table$scores <- dat_log2[k,]
T2 <- test.table[test.table[, Group_column] == Test_group,] # "Group_test"; the selected column could be changed to your interested group comparison
T1 <- test.table[test.table[, Group_column] == Ref_group,] # "Group_test"; the selected column could be changed to your interested group comparison
if(mean(T1$scores) == mean(T2$scores)){
tt_pval[signature,] = 1
}else{
tt_pval[signature,] <- t.test(x =T1$scores,y=T2$scores,paired = FALSE,var.equal = TRUE)$p.value
}
}
pvalue_Group <- data.frame(tt_pval)
pvalue_Group.FDR <- apply(pvalue_Group,2,function(x) p.adjust(x,method = "fdr")) ## Apply multiple correction testing
pvalue_Group.FDR <- as.data.frame(pvalue_Group.FDR)
if(FDR == "TRUE"){
Pvalue_cutoff = pvalue_Group.FDR
}else{
Pvalue_cutoff = pvalue_Group
}
####################################
####calculate fold change ##
####################################
FCgroup = fold_change(df_raw = df_raw,
sample_info = sample_info,
Group_column = Group_column,
Test_group=Test_group,
Ref_group=Ref_group)
#############################################
# Calculate percentage of response ##
############################################
if (is.null(FC)) {
FC_cutoff = 0
}
else {
FC_cutoff = as.numeric(FC)
}
FC_cutoff = as.numeric(FC)
if (is.null(pval)) {
pval = 0.1
}
else {
pval = as.numeric(pval)
}
#logical check ##
mod.up = (FCgroup > FC_cutoff) + (Pvalue_cutoff < pval) == 2 # TRUE Up gene, Both TRUE
mod.down = (FCgroup < (FC_cutoff*-1)) + (Pvalue_cutoff < pval) == 2 # TRUE down gene, Both TRUE
################################################
### prepare gene annotation table
Gene.matrix = mod_func[rownames(mod.up),]
#####UP GENE#######
pect_df <- data.frame(Module = row.names(mod.up), mod.up,genes=0) # create a new blank table
pect_df [,] <- NA
pect_df <- pect_df [-c(2:nrow(pect_df)),]
for (i in 1:length(unique(Gene.matrix$Module))){ # length of module
module <- unique(as.character(Gene.matrix$Module))[i] # look for only unique module
sums_up <- colSums(mod.up[Gene.matrix$Module==module,1,drop=FALSE]) # sum upgene of each column by module
sums_down <- colSums(mod.down[Gene.matrix$Module==module,1,drop=FALSE])
sums = sums_up-sums_down
genes <- nrow(Gene.matrix[Gene.matrix$Module==module,]) # sum number of gene in each module
pect_df <- rbind(pect_df,c(module,sums,genes)) # paste result into a new fake table
}
pect_df <- pect_df [-1,]
rownames(pect_df) <- pect_df$Module
pect_df$Module <- NULL
pect_df.cal <- pect_df
pect_df <- as.data.frame(lapply(pect_df, as.numeric)) # convert data frame to be numberic
pect_df <- (pect_df/pect_df$genes)*100
rownames(pect_df) <-rownames(pect_df.cal)
pect_df <- pect_df[,-ncol(pect_df),drop=FALSE]
Group_df = pect_df
Group_res <- SummarizedExperiment(assays=SimpleList(Percent=as.matrix(Group_df)))
if (SummarizedExperiment == "TRUE") {
Group_df = Group_res
}
else {
Group_df = Group_df
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.