#' =========================================================================
#' fragment_HL
#' -------------------------------------------------------------------------
#' fragment_HL performs the half_life fragmentation
#'
#' fragment_HL makes HL_fragments based on delay_fragments and assigns all
#' gathered information to the SummarizedExperiment object.
#'
#' The columns "HL_fragment" and "HL_mean_fragment" are added.
#'
#' fragment_HL makes half-life_fragments and assigns the mean of each fragment.
#'
#' The function used is:
#'
#' .score_fun_ave.
#'
#' The input the SummarizedExperiment object.
#'
#' pen is the penalty for new fragments in the dynamic programming, pen_out is
#' the outlier penalty.
#'
#' @param inp SummarizedExperiment: the input data frame with correct format.
#' @param cores integer: the number of assigned cores for the task.
#' @param pen numeric: an internal parameter for the dynamic programming.
#' Higher values result in fewer fragments. Default is the auto generated value.
#' @param pen_out numeric: an internal parameter for the dynamic programming.
#' Higher values result in fewer allowed outliers. Default is the auto
#' generated value.
#'
#' @return The SummarizedExperiment object:
#' \describe{
#' \item{ID:}{The bin/probe specific ID}
#' \item{position:}{The bin/probe specific position}
#' \item{intensity:}{The relative intensity at time point 0}
#' \item{probe_TI:}{An internal value to determine which fitting model is
#' applied}
#' \item{flag:}{Information on which fitting model is applied}
#' \item{position_segment:}{The position based segment}
#' \item{delay:}{The delay value of the bin/probe}
#' \item{half_life:}{The half-life of the bin/probe}
#' \item{TI_termination_factor:}{String, the factor of TI fragment}
#' \item{delay_fragment:}{The delay fragment the bin belongs to}
#' \item{velocity_fragment:}{The velocity value of the respective delay
#' fragment}
#' \item{intercept:}{The vintercept of fit through the respective delay
#' fragment}
#' \item{slope:}{The slope of the fit through the respective delay fragment}
#' \item{HL_fragment:}{The half-life fragment the bin belongs to}
#' \item{HL_mean_fragment:}{The mean half-life value of the respective
#' half-life fragment}
#' }
#'
#' @examples
#' data(fragmentation_minimal)
#' fragment_HL(inp = fragmentation_minimal, cores = 2, pen = 2, pen_out = 1)
#'
#' @export
fragment_HL <- function(inp, cores = 1, pen, pen_out) {
# I.Preparations: the dataframe is configured and some other variables are
# assigned
registerDoMC(cores) # cores for DoMC
rowRanges(inp)$HL_fragment <- NA
rowRanges(inp)$HL_mean_fragment <- NA
# the dataframe is sorted by strand and position.
inp <- inp_order(inp)
#make the tmp_df
tmp_df <- inp_df(inp, "ID", "half_life", "delay_fragment")
#revert the order in plus
tmp_df <- tmp_df_rev(tmp_df, "-")
# the fragmentation is performed on the delay_fragments, independend on
# if they are (terminal) outlires or NAs.
tmp_df[, "delay_fragment"] <- gsub("_O|_NA", "", tmp_df$delay_fragment)
# although _NA will most probably will be dismissed here, because there
# should be no half-life, if there is no delay
tmp_df <- na.omit(tmp_df)
unique_seg <- unlist(unique(tmp_df$delay_fragment))
count <- 1
# II. Dynamic Programming: the scoring function is interpreted
frags <- foreach(k = seq_along(unique_seg)) %dopar% {
section <- tmp_df[which(tmp_df$delay_fragment == unique_seg[k]), ]
best_frags <- c()
best_names <- c()
if (nrow(section) > 1) {
# only segments with more than one value are grouped...*
for (i in 2:nrow(section)) {
tmp_score <-
score_fun_ave(section[seq_len(i), "half_life"],
section[seq_len(i), "ID"], pen_out)
tmp_name <- names(tmp_score)
if (i > 3) {
# fragments of the size at lest 4 are allowed for half-life
for (j in (i - 1):3) {
tmp_val <- section[j:i, "half_life"]
tmp_ID <- section[j:i, "ID"]
tmp <-
score_fun_ave(tmp_val, tmp_ID, pen_out) + pen + best_frags[j - 2]
tmp_score <- c(tmp_score, tmp)
tmp_n <- paste0(best_names[j - 2], "|", names(tmp))
tmp_name <- c(tmp_name, tmp_n)
}
}
pos <- which(tmp_score == min(tmp_score))[1]
tmp_score <- tmp_score[pos]
tmp_name <- tmp_name[pos]
best_frags <- c(best_frags, tmp_score)
best_names <- c(best_names, tmp_name)
}
} else {
#* ...all segments with less than two values are grouped automatically
tmp_score <-
score_fun_ave(section[, "half_life"], section[, "ID"], pen_out)
tmp_name <- names(tmp_score)
best_names <- c(best_names, tmp_name)
}
best_names[length(best_names)]
}
# III. Fill the dataframe
for (k in seq_along(frags)) {
na <- strsplit(frags[[k]], "\\|")[[1]]
for (i in seq_along(na)) {
tmp_trgt <- strsplit(na[i], "_")[[1]][1]
trgt <- strsplit(tmp_trgt, ",")[[1]]
if (length(strsplit(na[i], "_")[[1]]) == 3) {
tmp_outl <- strsplit(na[i], "_")[[1]][3]
outl <- strsplit(tmp_outl, ",")[[1]]
trgt <- trgt[-which(trgt %in% outl)]
rows <- match(outl, rowRanges(inp)$ID)
nam <- paste0("Dc_", count, "_O")
rowRanges(inp)$HL_fragment[rows] <- nam
# the value assigned here is the mean (compare velocity and intercept
# for delay)
rowRanges(inp)$HL_mean_fragment[rows] <-
as.numeric(strsplit(na[i], "_")[[1]][2])
}
rows <- match(trgt, rowRanges(inp)$ID)
nam <- paste0("Dc_", count)
rowRanges(inp)$HL_fragment[rows] <- nam
rowRanges(inp)$HL_mean_fragment[rows] <-
as.numeric(strsplit(na[i], "_")[[1]][2])
count <- count + 1
}
}
if (sum(cumprod(is.na(rowRanges(inp)$HL_fragment))) > 0) {
rowRanges(inp)$HL_fragment[seq_len(
sum(cumprod(is.na(rowRanges(inp)$HL_fragment))))] <- "Dc_0.5_NA"
}
row_NA <- which(is.na(rowRanges(inp)$HL_fragment))
if (length(row_NA) > 0) {
group <- c(row_NA[1])
for (i in seq_along(row_NA)) {
if (is.na(rowRanges(inp)$HL_fragment[row_NA[i] + 1])) {
group <- c(group, row_NA[i] + 1)
} else if (gsub("_O", "", rowRanges(inp)$HL_fragment[group[1] - 1]) ==
gsub("_O", "", rowRanges(inp)$HL_fragment[group[length(group)] + 1])) {
rowRanges(inp)$HL_fragment[group] <-
paste0(gsub("_O", "", rowRanges(inp)$HL_fragment[group[1] - 1]), "_NA")
rowRanges(inp)$HL_mean_fragment[group] <-
rowRanges(inp)$HL_mean_fragment[group[1] - 1]
group <- row_NA[i + 1]
} else if (rowRanges(inp)$HL_fragment[group[1] - 1] != rowRanges(inp)$HL_fragment[
group[length(group)] + 1]) {
rowRanges(inp)$HL_fragment[group] <-
paste0("Dc_", as.numeric(
gsub("Dc_|_O", "", rowRanges(inp)$HL_fragment[group[1] - 1])) + 0.5, "_NA")
group <- row_NA[i + 1]
}
}
}
rowRanges(inp)$HL_fragment[is.na(rowRanges(inp)$HL_fragment)] <- paste0("Dc_", as.numeric(
gsub("Dc_|_O", "", rowRanges(inp)$HL_fragment[!is.na(rowRanges(inp)$HL_fragment)]
[length(rowRanges(inp)$HL_fragment[!is.na(rowRanges(inp)$HL_fragment)])])) + .5, "_NA")
inp
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.