#' =========================================================================
#' dataframe_summary_TI
#'-------------------------------------------------------------------------
#' dataframe_summary_TI creates one table with all TI fragments,p_value and
#' the coordinates
#'
#' The dataframe_summary creates one table with the following columns: event,
#' TI_fragment, TI_factor, TI_fragments_TU, p_value, feature_type,
#' gene, locus_tag, strand, TU, features, event_position, position_1 and
#' position_2.
#'
#' @param data SummarizedExperiment: the input data frame with correct format.
#' @param input dataframe: dataframe from event_dataframe function.
#'
#' @return
#' \describe{
#' \item{event:}{String, event type, transcription interference.}
#' \item{TI_fragment:}{String, the fragment with TI.}
#' \item{TI_termination_factor:}{String, the factor of TI fragment.}
#' \item{p_value:}{Integer, p_value of the event.}
#' \item{p_adjusted:}{Integer, p_value adjusted.}
#' \item{feature_type:}{String, region annotation covering the fragments.}
#' \item{gene:}{String, gene annotation covering the fragments.}
#' \item{locus_tag:}{String, locus_tag annotation covering the fragments.}
#' \item{strand:}{Boolean. The bin/probe specific strand (+/-).}
#' \item{TU:}{String, The overarching transcription unit.}
#' \item{Features:}{Integer, The number of segments within the TI.}
#' \item{event_position:}{Integer, the position middle between 2 TI
#' fragments.}
#' \item{position_1:}{String, the first position of TI fragment, if 2
#' fragments, first position is from the first fragment.}
#' \item{position_2:}{String, the last position of TI fragment, if 2
#' fragments, last position is from the second fragment.}
#' }
#' @return WIP
#'
#' @examples
#' data(stats_minimal)
#' data(res_minimal)
#' dataframe_summary_TI(data = stats_minimal, input = res_minimal)
#'
#' @export
dataframe_summary_TI <- function(data, input) {
tmp <-
as.data.frame(
rowRanges(data)[, c(
"ID",
"position",
"position_segment",
"flag",
"TU",
"delay_fragment",
"HL_fragment",
"intensity_fragment",
"velocity_fragment",
"event_duration",
"delay_frg_slope",
"p_value_slope",
"TI_termination_fragment",
"TI_mean_termination_factor",
"p_value_TI",
"TI_fragments_p_value"
)]
)
tmp <- tmp[,-c(1:4)]
tmp_event <-
input[, c(
"region",
"gene",
"locus_tag",
"FC_fragment_HL",
"FC_HL",
"p_value_HL",
"FC_fragment_intensity",
"FC_intensity",
"p_value_intensity",
"FC_HL_intensity",
"FC_HL_intensity_fragment",
"synthesis_ratio",
"synthesis_ratio_event",
"p_value_Manova",
"pausing_site",
"iTSS_I",
"event_ps_itss_p_value_Ttest",
"ps_ts_fragment",
"event_position"
)]
tmp_merged <- cbind(tmp, tmp_event)
tmp_merged <-
tmp_merged[grep("\\TU_\\d+$", tmp_merged$TU), ]
tmp <- tmp_merged[grep("TI", tmp_merged$flag), ]
uniqTU <- unique(na.omit(tmp$TU))
uniqTU <- uniqTU[grep("_T|_O|_NA", uniqTU, invert = TRUE)]
df <- data.frame()
event <- c()
TI_fragment <- c()
TI_termination_factor <- c()
p_value <- c()
feature_type <- c()
gene <- c()
locus_tag <- c()
strand <- c()
TU <- c()
features <- c()
event_position <- c()
position_1 <- c()
position_2 <- c()
for (i in seq_along(uniqTU)) {
d <- tmp[which(tmp$TU %in% uniqTU[i]), ]
d <-
d[grep("_T|_O|_NA", d$TI_termination_fragment, invert = TRUE), ]
d[which(d$velocity_fragment == Inf), "velocity_fragment"] <- NA
ev_fragments <- unique(na.omit(d$TI_termination_fragment))
if (is_empty(ev_fragments)) {
next ()
}
TI_frg <- unique(na.omit(d$TI_fragments_p_value))
if (!is_empty(TI_frg)) {
for (j in seq_along(TI_frg)) {
ti_frg <- unique(unlist(strsplit(TI_frg[j], split = ":")))
event <- c(event, "TI")
TI_fragment <- c(TI_fragment, paste(ti_frg, collapse = ":"))
TI_termination_factor <-
c(TI_termination_factor, paste(c(
round(unique(tmp[which(
tmp$TI_termination_fragment == ti_frg[1]),
"TI_mean_termination_factor"]), digits = 2),
round(unique(tmp[which(tmp$TI_termination_fragment == ti_frg[2]),
"TI_mean_termination_factor"]), digits = 2)
),
collapse = "|"))
p_value <-
c(p_value, formatC(unique(tmp[which(
tmp$TI_termination_fragment == ti_frg[1]), "p_value_TI"]),
format = "e", digits = 2))
feature_type <-
c(feature_type, paste(c(unique(tmp[which(
tmp$TI_termination_fragment == ti_frg[1]), "region"]),
(unique(tmp[which(tmp$TI_termination_fragment == ti_frg[2]),
"region"]))), collapse = "|"))
gene <-
c(gene, paste(c(unique(tmp[which(
tmp$TI_termination_fragment == ti_frg[1]), "gene"]),
(unique(tmp[which(
tmp$TI_termination_fragment ==
ti_frg[2]), "gene"]))), collapse = "|"))
locus_tag <-
c(locus_tag, paste(c(unique(tmp[which(
tmp$TI_termination_fragment == ti_frg[1]), "locus_tag"]),
(unique(tmp[which(tmp$TI_termination_fragment ==
ti_frg[2]), "locus_tag"]))), collapse = "|"))
strand <- c(strand, as.character(unique(d$strand)))
TU <- c(TU, unique(d$TU))
features <- c(features, length(ev_fragments))
event_position <-
c(event_position, (tmp[last(which(
tmp$TI_termination_fragment == ti_frg[1])), "position"] +
tmp[which(tmp$TI_termination_fragment ==
ti_frg[2]), "position"][1]) / 2)
position_1 <-
c(position_1, tmp[which(tmp$TI_termination_fragment ==
ti_frg[1]), "position"][1])
position_2 <-
c(position_2, last(tmp[which(tmp$TI_termination_fragment ==
ti_frg[2]), "position"]))
}
} else{
event <- c(event, "TI")
p_value <- c(p_value, NA)
TU <- c(TU, unique(d$TU))
strand <- c(strand, as.character(unique(d$strand)))
if (length(ev_fragments) == 2) {
TI_fragment <- c(TI_fragment, paste(ev_fragments, collapse = ":"))
TI_termination_factor <-
c(TI_termination_factor, paste(c(
round(unique(tmp[which(
tmp$TI_termination_fragment ==
ev_fragments[1]), "TI_mean_termination_factor"]), digits = 2),
round(unique(tmp[which(
tmp$TI_termination_fragment ==
ev_fragments[2]), "TI_mean_termination_factor"]), digits = 2)
),
collapse = "|"))
feature_type <-
c(feature_type, paste(c(unique(tmp[which(
tmp$TI_termination_fragment == ev_fragments[1]), "region"]),
(unique(tmp[which(tmp$TI_termination_fragment ==
ev_fragments[2]), "region"]))), collapse = "|"))
gene <-
c(gene, paste(c(unique(tmp[which(
tmp$TI_termination_fragment == ev_fragments[1]), "gene"]),
(unique(tmp[which(tmp$TI_termination_fragment ==
ev_fragments[2]), "gene"]))), collapse = "|"))
locus_tag <-
c(locus_tag, paste(c(unique(tmp[which(
tmp$TI_termination_fragment == ev_fragments[1]), "locus_tag"]),
(unique(tmp[which(tmp$TI_termination_fragment ==
ev_fragments[2]), "locus_tag"]))),
collapse = "|"))
position_1 <-
c(position_1, tmp[which(tmp$TI_termination_fragment ==
ev_fragments[2]), "position"][1])
position_2 <-
c(position_2, last(tmp[which(tmp$TI_termination_fragment ==
ev_fragments[2]), "position"]))
features <- c(features, 2)
event_position <-
c(event_position, (tmp[last(which(tmp$TI_termination_fragment ==
ev_fragments[1])), "position"] +
tmp[which(tmp$TI_termination_fragment ==
ev_fragments[2]), "position"][1]) /
2)
} else{
TI_fragment <-
c(TI_fragment, unique(na.omit(d$TI_termination_fragment)))
TI_termination_factor <-
c(TI_termination_factor, round(unique(
na.omit(d$TI_mean_termination_factor)
), digits = 2))
feature_type <-
c(feature_type, paste(unique(unlist(
strsplit(d$region, split = ";")
)), collapse = "|"))
gene <-
c(gene, paste(unique(unlist(
strsplit(d$gene, split = ";")
)), collapse = "|"))
locus_tag <-
c(locus_tag, paste(unique(unlist(
strsplit(d$locus_tag, split = ";")
)), collapse = "|"))
position_1 <-
c(position_1, tmp[which(tmp$TI_termination_fragment ==
ev_fragments[1]), "position"][1])
position_2 <-
c(position_2, last(tmp[which(tmp$TI_termination_fragment ==
ev_fragments[1]), "position"]))
features <- c(features, 1)
event_position <- c(event_position, NA)
}
}
}
df <-
cbind.data.frame(
event,
TI_fragment,
TI_termination_factor,
p_value,
feature_type,
gene,
locus_tag,
strand,
TU,
features,
event_position,
position_1,
position_2
)
if(nrow(df) != 0){
p_adjusted <-
p.adjust(as.numeric(as.character(df$p_value)), method = "fdr")
df <-
tibble::add_column(df, formatC(p_adjusted, format = "e", digits = 2),
.after = 4)
colnames(df)[5] <- "p_adjusted"
}
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.