#' =========================================================================
#' dataframe_summary
#' -------------------------------------------------------------------------
#' dataframe_summary creates two tables relating gene annotation to fragments
#'
#' dataframe_summary creates two tables summary of segments and their
#' half-lives. The first output is bin/probe features and the second one is
#' intensity fragment based.The dataframe_summary creates one table with
#' feature_type, gene, locus_tag, position, strand, TU, delay_fragment,
#' HL_fragment, half_life, intensity_fragment, intensity and velocity. The
#' second table is similar to the first one but in compact form. It contains the
#' same columns, the only difference is on position where a start and end
#' position are indicated separately.
#'
#'
#' @param data SummarizedExperiment: the input data frame with correct format.
#' @param input dataframe: dataframe from event_dataframe function.
#'
#' @return
#' \item{bin_df:}{all information regarding bins:
#' \describe{
#' \item{position:}{Integer, position of the bin/probe on the genome}
#' \item{feature_type:}{String, region annotation covering the fragments}
#' \item{gene:}{String, gene annotation covering the fragments}
#' \item{locus_tag:}{String, locus_tag annotation covering the fragments}
#' \item{strand:}{Boolean. The bin/probe specific strand (+/-)}
#' \item{segment:}{String, the bin/probe segment on the genome}
#' \item{TU:}{String, The overarching transcription unit}
#' \item{delay_fragment:}{The delay fragment the bin belongs to}
#' \item{delay:}{Integer, the delay value of the bin/probe}
#' \item{HL_fragment:}{The half-life fragment the bin belongs to}
#' \item{half_life:}{The half-life of the bin/probe}
#' \item{intensity_fragment:}{The intensity fragment the bin belongs to}
#' \item{intensity:}{The relative intensity at time point 0}
#' \item{flag:}{String, the flag of the bin/probe, contains information
#' or the distribution for the #'different fitting models}
#' \item{TI_termination_factor:}{String, the TI termination factor determined by TI}
#' }
#' }
#' \item{frag_df:}{all information regarding fragments:
#' \describe{
#' \item{feature_type:}{String, region annotation covering the fragments}
#' \item{gene:}{String, gene annotation covering the fragments}
#' \item{locus_tag:}{String, locus_tag annotation covering the fragments}
#' \item{first_position_frg:}{Integer, the bin/probe specific first position}
#' \item{last_position_frg:}{Integer, the bin/probe specific last position}
#' \item{strand:}{Boolean. The bin/probe specific strand (+/-)}
#' \item{TU:}{String, The overarching transcription unit}
#' \item{segment:}{String, the bin/probe segment on the genome}
#' \item{delay_fragment:}{String, the delay fragment the bin belongs to}
#' \item{HL_fragment:}{Integer, the half_life fragment of the bin/probe belongs to}
#' \item{half_life:}{Integer, the half-life of the bin/probe}
#' \item{HL_SD:}{Integer, the half-life standard deviation of the HL fragment, bin/probe based}
#' \item{HL_SE:}{Integer, the half-life standard error of the HL fragment, bin/probe based}
#' \item{intensity_fragment:}{Integer, the intensity fragment the bin belongs to}
#' \item{intensity:}{Integer, the relative intensity of bin/probe at time point 0}
#' \item{intensity_SD:}{Integer, the intensity standard deviation of the intensity fragment, bin/probe based}
#' \item{intensity_SE:}{Integer, the intensity standard error of the intensity fragment, bin/probe based}
#' \item{velocity:}{The velocity value of the respective delay fragment}
#' }
#' }
#'
#' @examples
#' data(stats_minimal)
#' data(res_minimal)
#' dataframe_summary(data = stats_minimal, input = res_minimal)
#' @export
#'
dataframe_summary <- function(data, input) {
tmp <-
as.data.frame(
rowRanges(data)[, c(
"ID",
"position",
"TU",
"position_segment",
"delay",
"delay_fragment",
"HL_fragment",
"half_life",
"HL_mean_fragment",
"intensity",
"intensity_mean_fragment",
"intensity_fragment",
"flag",
"TI_termination_factor",
"velocity_fragment"
)])
tmp <- tmp[,-c(1:4)]
tmp_event <- input[, c("region", "gene", "locus_tag")]
tmp_merged <- cbind(tmp, tmp_event)
tmp_merged <-
as.data.frame(tmp_merged %>% mutate_if(is.numeric, round, digits = 2))
tmp_merged <-
tmp_merged[grep("\\TU_\\d+$", tmp_merged$TU), ]
tmp_merged <-
tmp_merged[, c(
"ID",
"region",
"gene",
"locus_tag",
"position",
"strand",
"TU",
"position_segment",
"delay",
"delay_fragment",
"HL_fragment",
"half_life",
"HL_mean_fragment",
"intensity",
"intensity_mean_fragment",
"intensity_fragment",
"flag",
"TI_termination_factor",
"velocity_fragment"
)]
tmp_merged[grep("_O$", tmp_merged$HL_fragment), "HL_mean_fragment"] <-
tmp_merged[grep("_O$", tmp_merged$HL_fragment), "half_life"]
tmp_merged[grep("_O$", tmp_merged$intensity_fragment),
"intensity_mean_fragment"] <-
tmp_merged[grep("_O$", tmp_merged$intensity_fragment), "intensity"]
tmp_merged <-
tmp_merged[, c(
"ID",
"region",
"gene",
"locus_tag",
"position",
"strand",
"position_segment",
"TU",
"delay_fragment",
"delay",
"HL_fragment",
"half_life",
"HL_mean_fragment",
"intensity",
"intensity_mean_fragment",
"intensity_fragment",
"flag",
"TI_termination_factor",
"velocity_fragment"
)]
colnames(tmp_merged) <-
c(
"ID",
"feature_type",
"gene",
"locus_tag",
"position",
"strand",
"segment",
"TU",
"delay_fragment",
"delay",
"HL_fragment",
"half_life",
"HL_mean_fragment",
"intensity",
"intensity_mean_fragment",
"intensity_fragment",
"flag",
"TI_termination_factor",
"velocity_fragment"
)
tmp_df <-
tmp_merged[, c(
"ID",
"feature_type",
"gene",
"locus_tag",
"position",
"strand",
"segment",
"TU",
"delay_fragment",
"delay",
"HL_fragment",
"half_life",
"intensity_fragment",
"intensity",
"flag",
"TI_termination_factor"
)]
int_frg <- unique(tmp_merged$intensity_fragment)
int_frg <- int_frg[grep(paste0("\\I_", "\\d+", "$"), int_frg)]
df <- data.frame()
if(length(int_frg) != 0){
for (i in seq_along(int_frg)) {
d <-
tmp_merged[which(tmp_merged$intensity_fragment == int_frg[i]),
]
df[i, "feature_type"] <-
paste(unique(unlist(strsplit(
d$feature_type, split = ";"
))), collapse = "|")
df[i, "gene"] <-
paste(unique(unlist(strsplit(d$gene, split = ";"))), collapse = "|")
df[i, "locus_tag"] <-
paste(unique(unlist(strsplit(
d$locus_tag, split = ";"
))), collapse = "|")
df[i, "first_position_frg"] <-
tmp[which(tmp$intensity_fragment == int_frg[i]), "position"][1]
df[i, "last_position_frg"] <-
last(tmp[which(tmp$intensity_fragment == int_frg[i]), "position"])
df[i, "strand"] <- unique(d$strand)
df[i, "TU"] <- unique(d$TU)
df[i, "segment"] <- unique(d$segment)
delay_frg <-
d[grep("\\D_\\d+$", d$delay_fragment)[1], "delay_fragment"]
if (is.na(delay_frg)) {
df[i, "delay_fragment"] <- NA
} else{
df[i, "delay_fragment"] <-
unique(tmp_merged[which(tmp_merged$delay_fragment %in% delay_frg),
"delay_fragment"])
}
hl_frg <- d[grep("\\Dc_\\d+$", d$HL_fragment)[1], "HL_fragment"]
if (is.na(hl_frg)) {
df[i, "HL_fragment"] <- NA
df[i, "half_life"] <- NA
df[i, "HL_SD"] <- NA
df[i, "HL_SE"] <- NA
} else{
df[i, "HL_fragment"] <-
unique(tmp_merged[which(tmp_merged$HL_fragment %in% hl_frg),
"HL_fragment"])
df[i, "half_life"] <-
unique(tmp_merged[which(tmp_merged$HL_fragment %in% hl_frg),
"HL_mean_fragment"])
df[i, "HL_SD"] <-
sd(tmp_merged[which(tmp_merged$HL_fragment %in% hl_frg), "half_life"])
df[i, "HL_SE"] <-
se(tmp_merged[which(tmp_merged$HL_fragment %in% hl_frg), "half_life"])
}
df[i, "intensity_fragment"] <- int_frg[i]
df[i, "intensity"] <- unique(d$intensity_mean_fragment)
df[i, "intensity_SD"] <-
sd(tmp_merged[which(tmp_merged$intensity_fragment %in% int_frg[i]),
"intensity"])
df[i, "intensity_SE"] <-
se(tmp_merged[which(tmp_merged$intensity_fragment %in% int_frg[i]),
"intensity"])
df[i, "velocity"] <- unique(d$velocity)
}
}
df <-
as.data.frame(df %>% mutate_if(is.numeric, round, digits = 2))
tables <- list(tmp_df, df)
return(tables)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.