# =========================================================================
# fragment_TI Performs the TI fragmentation
# -------------------------------------------------------------------------
#'
#' fragment_TI makes TI_fragments based on TUs and assigns all gathered
#' information to the SummarizedExperiment object.
#' The columns "TI_termination_fragment" and the TI_mean_termination_factor
#' are added.
#' The function used is:
#' .score_fun_ave.
#' The input is the SummarizedExperiment object.
#' pen is the penalty for new fragments in the dynamic programming, pen_out is
#' the outlier penalty.
#'
#' @param inp SummarizedExperiment: the input data frame with correct format.
#' @param cores cores: integer: the number of assigned cores for the task.
#' @param pen numeric: an internal parameter for the dynamic programming.
#' Higher values result in fewer fragments. Default is the auto generated value.
#' @param pen_out numeric: an internal parameter for the dynamic programming.
#' Higher values result in fewer allowed outliers. Default is the auto generated
#' value.
#'
#' @return the SummarizedExperiment object: with TI_termination_fragment and
#' TI_termination_mean_fragment added to the rowRanges.
#'
#' @examples
#' data(fragmentation_minimal)
#' fragment_TI(inp = fragmentation_minimal, cores = 2, pen = 2, pen_out = 1)
#'
#' @export
fragment_TI <- function(inp, cores = 1, pen, pen_out) {
# I.Preparations: the dataframe is configured and some other variables are
# assigned
registerDoMC(cores) # cores for DoMC
rowRanges(inp)$TI_termination_fragment <- NA
rowRanges(inp)$TI_mean_termination_factor <- NA
# the dataframe is sorted by strand and position.
inp <- inp_order(inp)
#make the tmp_df
tmp_df <- inp_df(inp, "ID", "TI_termination_factor", "TU", "flag")
#revert the order in plus
tmp_df <- tmp_df_rev(tmp_df, "-")
# this is the same way of selecting the IDs as the selection for the TI_fit
corr_IDs <- tmp_df$ID[grep("TI", tmp_df$flag)]
tmp_df <- tmp_df[tmp_df$ID %in% corr_IDs, ]
tmp_df <- na.omit(tmp_df)
# only the TUs that are flagged with TI at any position are considered
unique_seg <- unlist(unique(tmp_df$TU))
# only true TUs are taken (no TU_NA)
unique_seg <- unique_seg[grep("_NA", unique_seg, invert = TRUE)]
count <- 1
if (length(unique_seg) == 0) {
return(inp)
}
# II. Dynamic Programming: the scoring function is interpreted
frags <- foreach(k = seq_along(unique_seg)) %dopar% {
section <- tmp_df[which(tmp_df$TU == unique_seg[k]), ]
best_frags <- c()
best_names <- c()
if (nrow(section) > 1) {
# only segments with more than one value are grouped...*
for (i in 2:nrow(section)) {
tmp_score <-
score_fun_ave(section[seq_len(i), "TI_termination_factor"],
section[seq_len(i), "ID"], pen_out)
tmp_name <- names(tmp_score)
if (i > 3) {
for (j in (i - 1):3) {
tmp_val <- section[j:i, "TI_termination_factor"]
tmp_ID <- section[j:i, "ID"]
tmp <-
score_fun_ave(tmp_val, tmp_ID, pen_out) + pen + best_frags[j - 2]
tmp_score <- c(tmp_score, tmp)
tmp_n <- paste0(best_names[j - 2], "|", names(tmp))
tmp_name <- c(tmp_name, tmp_n)
}
}
pos <- which(tmp_score == min(tmp_score))[1]
tmp_score <- tmp_score[pos]
tmp_name <- tmp_name[pos]
best_frags <- c(best_frags, tmp_score)
best_names <- c(best_names, tmp_name)
}
} else {
#* ...all segments with less than two values are grouped automatically
tmp_score <-
score_fun_ave(section[, "TI_termination_factor"], section[, "ID"], pen_out)
tmp_name <- names(tmp_score)
best_names <- c(best_names, tmp_name)
}
best_names[length(best_names)]
}
# III. Fill the dataframe
for (k in seq_along(frags)) {
na <- strsplit(frags[[k]], "\\|")[[1]]
for (i in seq_along(na)) {
tmp_trgt <- strsplit(na[i], "_")[[1]][1]
trgt <- strsplit(tmp_trgt, ",")[[1]]
if (length(strsplit(na[i], "_")[[1]]) == 3) {
tmp_outl <- strsplit(na[i], "_")[[1]][3]
outl <- strsplit(tmp_outl, ",")[[1]]
trgt <- trgt[-which(trgt %in% outl)]
rows <- match(outl, rowRanges(inp)$ID)
nam <- paste0("TI_", count, "_O")
rowRanges(inp)$TI_termination_fragment[rows] <- nam
rowRanges(inp)$TI_mean_termination_factor[rows] <-
as.numeric(strsplit(na[i], "_")[[1]][2])
}
rows <- match(trgt, rowRanges(inp)$ID)
nam <- paste0("TI_", count)
rowRanges(inp)$TI_termination_fragment[rows] <- nam
rowRanges(inp)$TI_mean_termination_factor[rows] <-
as.numeric(strsplit(na[i], "_")[[1]][2])
count <- count + 1
}
}
if (sum(cumprod(is.na(rowRanges(inp)$TI_termination_fragment))) > 0) {
# this is a trick to fill the first position
rowRanges(inp)$TI_termination_fragment[
seq_len(sum(cumprod(is.na(rowRanges(inp)$TI_termination_fragment))))] <- "bla"
}
row_NA <- which(is.na(rowRanges(inp)$TI_termination_fragment))
if (length(row_NA) > 0) {
group <- c(row_NA[1])
for (i in seq_along(row_NA)) {
if (is.na(rowRanges(inp)$TI_termination_fragment[row_NA[i] + 1])) {
group <- c(group, row_NA[i] + 1)
}
# this time only the ones within a fragment are considered
else if (gsub("_O", "", rowRanges(inp)$TI_termination_fragment[group[1] - 1]) ==
gsub("_O", "",
rowRanges(inp)$TI_termination_fragment[group[length(group)] + 1])) {
rowRanges(inp)$TI_termination_fragment[group] <-
paste0(gsub("_O", "",
rowRanges(inp)$TI_termination_fragment[group[1] - 1]), "_NA")
rowRanges(inp)$TI_mean_termination_factor[group] <-
rowRanges(inp)$TI_mean_termination_factor[group[1] - 1]
group <- row_NA[i + 1]
}
# the ones between are still NA
else if (rowRanges(inp)$TI_termination_fragment[group[1] - 1] !=
rowRanges(inp)$TI_termination_fragment[group[length(group)] + 1]) {
group <- row_NA[i + 1]
}
}
}
# here the first position is reverted to NA
rowRanges(inp)$TI_termination_fragment[which(rowRanges(inp)$TI_termination_fragment ==
"bla")] <- NA
inp
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.