knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 4, fig.width = 7 ) library("cytoeffect")
In this vignette, we show the cytoeffect
workflow for both the full Bayesian hierarchical model and the parametric bootstrap with the simplified model.
Simulate dataset.
set.seed(1) df = simulate_data() str(df) df condition = "condition" group = "donor" protein_names = names(df)[3:ncol(df)]
Sample from posterior distribution using Stan.
fit = poisson_lognormal(df, protein_names = protein_names, condition = condition, group = group, r_donor = 2, warmup = 200, iter = 325, adapt_delta = 0.8, num_chains = 1)
Plot marginal credible intervals.
plot(fit, type = "theta") plot(fit, type = "beta") plot_pairs(fit, "m01", "m02", "m03") plot(fit, type = "sigma") plot(fit, type = "Cor")
Multivariate DiSTATIS plot.
plot_distatis(fit, ndraws = 125)
Fit model using composite maximum likelihood estimatation.
fit = poisson_lognormal_mcle(df, protein_names = protein_names, condition = condition, group = group, ncores = 1)
Plot marginal credible intervals.
plot(fit, type = "beta") plot(fit, type = "sigma") plot(fit, type = "Cor")
Multivariate DiSTATIS plot.
plot_distatis(fit, ndraws = 125)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.