# GO over this again later to make sure it is done the right way ....
anota2seqDataSetFromSE<- function(
se,
assayNum = 1,
dataType,
normalize = FALSE,
transformation = "TMM-log2",
filterZeroGenes = ifelse(dataType == "RNAseq" & normalize == TRUE, TRUE, FALSE),
varCutOff = NULL)
{
if(is.null(se) == TRUE){
stop("Please provide a SummarizedExperiment ...")
}
anota2seqCheckParameter(normalize,dataType,transformation,filterZeroGenes,varCutOff,inFunc="dataset")
#if summarizedExperiment is supplied dataP,dataT must be NULL ...
if(is.null(se) == FALSE){
if(class(se) != "SummarizedExperiment"){
stop("Parameter se must be an object of class SummerizedExperiment.")
}
}
if(is.null(assayNum) & length(assays(se)) > 1){
stop("More than 1 assay detected in se but assayNum parameter not specified.\nPlease specify which assay to use.")
}
if(length(assays(se)) == 1 & is.null(assayNum)){
assayNum <- 1
warning("assayNum parameter not specified and length of assays(se) == 1. Will take the first assay data as input.\n")
}
anot<- colData(se)
if("RNA" %in% colnames(anot) == FALSE){
stop("colData in the provided SummarizedExperoment has no RNA column. Please read the anota2seqDataSetFromSE function help about the RNA column in colData of your SummarizedExperiment. \n")
}
if(length(levels(as.factor(anot[,"RNA"]))) > 2 | length(levels(as.factor(anot[,"RNA"]))) < 2 ){
stop("RNA column in colData must describe exactly two RNA sources. Please read the Anota2seqDataSet function help about the RNA column in colData of your SummarizedExperiment.")
}
if(length(levels(as.factor(anot[,"RNA"]))) == 2){
msg <- NULL
if("P"%in%anot[,"RNA"] == FALSE){
msg <- c(msg,"No P found in RNA column in colData.\n")
}
if("T"%in%anot[,"RNA"] == FALSE){
msg <- c(msg,"No T found in RNA column in colData.\n")
}
if(is.null(msg) == FALSE){
stop(paste(msg,"Please read the Anota2seqDataSet function help about the RNA column in colData of your SummarizedExperiment.\n",sep=""))
}
}
if("samplePairs" %in% colnames(anot) == FALSE){
stop("colData provided has no samplePairs column. Please read the Anota2seqDataSet function about the samplePairs column in colData of your SummarizedExperiment. \n")
}
if(length(unique(anot[,"samplePairs"])) < ncol(assays(se)[[assayNum]])/2){
stop("Too few sample pairs described in colData. Please read the Anota2seqDataSet function about the samplePairs column in colData of your SummarizedExperiment.\n")
}
if(length(unique(anot[,"samplePairs"])) > ncol(assays(se)[[assayNum]])/2){
stop("Too many sample pairs described in colData. Please read the Anota2seqDataSet function about the samplePairs column in colData of your SummarizedExperiment.\n")
}
if("treatment" %in% colnames(anot) == FALSE){
stop("colData provided has no treatment column. Please read the Anota2seqDataSet function help about the treatment column in colData of your SummarizedExperiment. \n")
}
anotP <- anot[anot[,"RNA"] == "P",]
anotT <- anot[anot[,"RNA"] == "T",]
anotP <- anotP[order(anotP[,"samplePairs"]),]
anotT <- anotT[order(anotT[,"samplePairs"]),]
# get DataP and dataT
dataP <- assays(se)[[assayNum]][,rownames(anotP)]
dataT <- assays(se)[[assayNum]][,rownames(anotT)]
# order dataP and dataT by samplePairs
dataP <- dataP[,rownames(anotP)]
dataT <- dataT[,rownames(anotT)]
# Get phenoVec - Treatment column of anotP/anotT should correspond to this
phenoVec <- as.vector(anotP[,"treatment"])
# get batchVec if present ...
if("batch"%in%colnames(anotP) == TRUE){
batchVec <- as.vector(anotP[,"batch"])
}
if("batch"%in%colnames(anotP) == FALSE){
batchVec <- NULL
}
anota2seqCheckInput(dataP,
dataT,
phenoVec,
batchVec,
NULL,
"BH",
inFunc="fromSE")
if(dataType == "RNAseq"){
preProcess <- anota2seqRNAseqPreProcessing(dataP=dataP,
dataT=dataT,
transformation =transformation,
filterZeroGenes=filterZeroGenes,
normalize=normalize)
dataT <- preProcess$dataT
dataP <- preProcess$dataP
}
# Check for genes that show low variance in the dataset ...
varCheck <- anota2seqFiltCheckVar(tmpdataP = dataP,
tmpdataT = dataT,
varCutOff = varCutOff,
phenoVec = phenoVec)
dataP <- varCheck$dataP
dataT <- varCheck$dataT
if(max(range(dataP)) > 100 | max(range(dataT)) > 100){
message()
stop("Input data range indicates a non continuous scale.\nMake sure the input data is normalized and if coming from RNAsequencing transformed to a continuous scale.\n")
}
# initialize the Anota2seqDataSet class first so that checks on phenoVec and contrast get performed.
anota2seqClass <- new("Anota2seqDataSet",
dataP = dataP,
dataT = dataT,
phenoVec = phenoVec,
batchVec = batchVec,
contrasts = NULL,
qualityControl = NULL,
residOutlierTest = NULL,
translatedmRNA = NULL,
totalmRNA = NULL,
translation = NULL,
buffering = NULL,
selectedTranslatedmRNA = NULL,
selectedTotalmRNA = NULL,
selectedTranslation = NULL,
selectedBuffering = NULL,
mRNAAbundance = NULL,
deltaData = NULL)
message("All input checkpoints passed.\n")
return(anota2seqClass)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.