anota2seqAnalyze <- function (Anota2seqDataSet, contrasts=NULL, correctionMethod = "BH",
useProgBar = TRUE, fileStem = "ANOTA2SEQ",
analysis = c("translation","buffering","translated mRNA","total mRNA"))
{
if(is.null(Anota2seqDataSet)){
stop("Please provide an Anota2seqDataSet.\n")
}
if(class(Anota2seqDataSet)!= "Anota2seqDataSet"){
stop("Please provide an Anota2seqDataSet.\n")
}
anota2seqCheckInput(dataP = Anota2seqDataSet@dataP,
dataT = Anota2seqDataSet@dataT,
phenoVec = Anota2seqDataSet@phenoVec,
batchVec = Anota2seqDataSet@batchVec,
contrasts = contrasts,
correctionMethod=correctionMethod)
if(is.null(contrasts) == FALSE){
Anota2seqDataSet@contrasts <- contrasts
}
#########################################################
anota2seqCheckParameter(analysis = analysis,
inFunc = "analysis")
phenoVec <- Anota2seqDataSet@phenoVec
batchVec <- Anota2seqDataSet@batchVec
contrasts <- Anota2seqDataSet@contrasts
for(reg in 1:length(analysis)){
if(analysis[reg]=="translated mRNA"){
message("Starting analysis of translated mRNA (RPFs). \n")
dataP <- Anota2seqDataSet@dataP
dataT <- NULL
}
if(analysis[reg]=="total mRNA"){
message("Starting analysis of total mRNA. \n")
dataP <- Anota2seqDataSet@dataT
dataT <- NULL
}
if(analysis[reg] =="translation"){
dataP <- Anota2seqDataSet@dataP
dataT <- Anota2seqDataSet@dataT
message("Starting analysis of translation.\n")
}
if(analysis[reg] == "buffering"){
dataP <- Anota2seqDataSet@dataT
dataT <- Anota2seqDataSet@dataP
message("Starting analysis of translational buffering.\n")
}
phenoVecOrg <- phenoVec
phenoVec <- as.factor(phenoVec)
if (is.null(batchVec) == FALSE) {
batchVec <- as.factor(batchVec)
}
nPheno <- length(levels(phenoVec))
phenoLev <- levels(phenoVec)
nData <- dim(dataP)[1]
#message("Running anotaGetSigGenes\n")
if (is.null(contrasts)) {
message("\tUsing default \"treatment\" contrasts between (custom contrasts can be set):\n")
message("\t", paste(levels(phenoVec),sep=" "))
message("\n")
}
residRvmDf <- apvP <- apvRvmP <- apvPAdj <- apvRvmPAdj <- apvEff <- apvMSerror <- apvRvmMSerror <- apvT <- apvF <- apvFP <- apvRvmF <- apvN <- apvRvmDf <- apvDf <- matrix(nrow = nData,
ncol = nPheno - 1)
residDf <- unadjustedResidError <- apvSlope <- apvSlopeP <- c(rep(NA,
nData))
rownames(apvP) <- rownames(apvRvmP) <- rownames(apvRvmDf) <- rownames(apvDf) <- rownames(apvEff) <- rownames(apvRvmF) <- rownames(apvRvmF) <- rownames(apvRvmMSerror) <- names(residDf) <- names(apvSlope) <- names(apvSlopeP) <- rownames(residRvmDf) <- rownames(dataP)
total <- nData
for (i in 1:nData) {
tmpList <- list(PolyRNA = dataP[i, ], TotalRNA = dataT[i,], phenoType = phenoVec, batchVec = batchVec)
tmpApvSum <- c()
tmpDim <- c()
tmpApv <- c()
if (is.null(contrasts) == FALSE) {
contrasts(tmpList$phenoType) <- contrasts
}
if (is.null(contrasts) == TRUE) {
tmpCont <- contrasts(tmpList$phenoType)
tmpCont[1, ] <- (-1)
contrasts(tmpList$phenoType) <- tmpCont
Anota2seqDataSet@contrasts <- tmpCont
}
if (i == 1) {
tmpOut <- contrasts(tmpList$phenoType)
tmpColSum <- apply(tmpOut, 2, sum)
if (sum(tmpColSum == 0) != length(tmpColSum)) {
message()
stop("\nIncorrect contrasts. Each column of the contrast matrix should sum to 0\n\n")
}
colnames(tmpOut) <- paste("contrast", c(1:dim(tmpOut)[2]))
message("\tThese contrasts will be evaluated:\n\n")
print(tmpOut)
message("\n")
if (useProgBar == TRUE) {
pb <- txtProgressBar(min = 0, max = total, style = 3)
}
}
## attach(tmpList)
## rewritten to avoid use of attach; should remove the error msg
modelAlt <- NA
if (is.null(batchVec) == TRUE & is.null(dataT) == FALSE) {
tmpApv <- lm(dataP[i,] ~ dataT[i,] + phenoVec)
modelAlt <- 1
}
if (is.null(batchVec) == FALSE & is.null(dataT) == FALSE) {
tmpApv <- lm(dataP[i,] ~ dataT[i,] + phenoVec + batchVec)
modelAlt <- 1
}
if (is.null(batchVec) == TRUE & is.null(dataT) == TRUE) {
tmpApv <- lm(dataP[i,] ~ phenoVec)
modelAlt <- 2
}
if (is.null(batchVec) == FALSE & is.null(dataT) == TRUE) {
tmpApv <- lm(dataP[i,] ~ phenoVec + batchVec)
modelAlt <- 2
}
##detach(tmpList)
tmpApvSum <- summary(tmpApv)
if (modelAlt == 1) {
tmpError <- tmpApvSum$sigma
unadjustedResidError[i] <- tmpError
tmpSlope <- tmpApvSum$coefficients[2, 1]
apvSlope[i] <- tmpSlope
apvSlopeP[i] <- 1
if(analysis[reg] =="translation"){
if (apvSlope[i] < 0 | apvSlope[i] > 1) {
apvSlopeP[i] <- anota2seqSlopeTest(tmpLm = tmpApv,
curSlope = apvSlope[i],analysis ="translation")
}
}
if(analysis[reg] == "buffering"){
if (apvSlope[i] < -1 | apvSlope[i] > 0) {
apvSlopeP[i] <- anota2seqSlopeTest(tmpLm = tmpApv,
curSlope = apvSlope[i],analysis = "buffering")
}
}
contMat <- contrasts(tmpList$phenoType)
for (j in 1:dim(contMat)[2]) {
contMatRed <- contMat[contMat[, j] != 0, j]
tmpContMat <- matrix(nrow = length(contMatRed),
ncol = 4)
rownames(tmpContMat) <- names(contMatRed)
colnames(tmpContMat) <- c("contrast", "estimate",
"groupN", "T_mean")
for (k in 1:dim(tmpContMat)[1]) {
tmpGroup <- rownames(tmpContMat)[k]
tmpEst <- mean(dataP[i, phenoVecOrg == tmpGroup]) -
(tmpSlope * mean(dataT[i, phenoVecOrg ==
tmpGroup]))
tmpCovMean <- mean(dataT[i, phenoVecOrg ==
tmpGroup])
tmpContMat[k, "contrast"] <- contMatRed[k]
tmpContMat[k, "estimate"] <- tmpEst
tmpContMat[k, "groupN"] <- sum(phenoVecOrg ==
tmpGroup)
tmpContMat[k, "T_mean"] <- tmpCovMean
}
tmpContMatCopy <- tmpContMat
tmpContMatCopy[tmpContMatCopy[, "contrast"] >
0, "contrast"] <- tmpContMatCopy[tmpContMatCopy[,
"contrast"] > 0, "contrast"]/sum(abs(tmpContMatCopy[tmpContMatCopy[,
"contrast"] > 0, "contrast"]))
tmpContMatCopy[tmpContMatCopy[, "contrast"] <
0, "contrast"] <- tmpContMatCopy[tmpContMatCopy[,
"contrast"] < 0, "contrast"]/sum(abs(tmpContMatCopy[tmpContMatCopy[,
"contrast"] < 0, "contrast"]))
tmpDiffEff <- sum(tmpContMatCopy[, "contrast"] *
tmpContMatCopy[, "estimate"])
lmT <- lm(dataT[i, ] ~ as.factor(phenoVecOrg))
lmTAov <- anova(lmT)
tmpCovSS <- lmTAov[2, 2]
tmpCovMean <- mean(dataT[i, ])
tmpCov <- sum(tmpContMatCopy[, "contrast"] *
(tmpContMat[, "T_mean"] - tmpCovMean))
tmpN <- sum(tmpContMatCopy[, "contrast"] * tmpContMatCopy[,
"contrast"]/tmpContMat[, "groupN"])
tmpErrorAdjusted <- tmpError * tmpError * c(tmpN +
(tmpCov * tmpCov/tmpCovSS))
apvMSerror[i, j] <- tmpErrorAdjusted
apvEff[i, j] <- tmpDiffEff
apvDf[i, j] <- 1
}
residDf[i] <- tmpApvSum$df[2]
if (useProgBar == TRUE) {
setTxtProgressBar(pb, i)
}
}
if (modelAlt == 2) {
tmpError <- tmpApvSum$sigma
unadjustedResidError[i] <- tmpError
tmpSlope <- NA
apvSlope[i] <- tmpSlope
apvSlopeP[i] <- NA
contMat <- contrasts(tmpList$phenoType)
for (j in 1:dim(contMat)[2]) {
contMatRed <- contMat[contMat[, j] != 0, j]
tmpContMat <- matrix(nrow = length(contMatRed),
ncol = 4)
rownames(tmpContMat) <- names(contMatRed)
colnames(tmpContMat) <- c("contrast", "estimate",
"groupN", "T_mean")
for (k in 1:dim(tmpContMat)[1]) {
tmpGroup <- rownames(tmpContMat)[k]
tmpEst <- mean(dataP[i, phenoVecOrg == tmpGroup])
tmpContMat[k, "contrast"] <- contMatRed[k]
tmpContMat[k, "estimate"] <- tmpEst
tmpContMat[k, "groupN"] <- sum(phenoVecOrg ==
tmpGroup)
tmpContMat[k, "T_mean"] <- NA
}
tmpContMatCopy <- tmpContMat
tmpContMatCopy[tmpContMatCopy[, "contrast"] >
0, "contrast"] <- tmpContMatCopy[tmpContMatCopy[,
"contrast"] > 0, "contrast"]/sum(abs(tmpContMatCopy[tmpContMatCopy[,
"contrast"] > 0, "contrast"]))
tmpContMatCopy[tmpContMatCopy[, "contrast"] <
0, "contrast"] <- tmpContMatCopy[tmpContMatCopy[,
"contrast"] < 0, "contrast"]/sum(abs(tmpContMatCopy[tmpContMatCopy[,
"contrast"] < 0, "contrast"]))
tmpDiffEff <- sum(tmpContMatCopy[, "contrast"] *
tmpContMatCopy[, "estimate"])
tmpN <- sum(tmpContMatCopy[, "contrast"] * tmpContMatCopy[,
"contrast"]/tmpContMat[, "groupN"])
tmpErrorAdjusted <- tmpError * tmpError * c(tmpN)
apvMSerror[i, j] <- tmpErrorAdjusted
apvEff[i, j] <- tmpDiffEff
apvDf[i, j] <- 1
}
residDf[i] <- tmpApvSum$df[2]
if (useProgBar == TRUE) {
setTxtProgressBar(pb, i)
}
}
}
message("\n\n")
apvF <- apvEff * apvEff/apvMSerror
for (j in 1:(nPheno - 1)) {
apvFP[, j] <- 1 - pf(apvF[, j], apvDf[, j], residDf)
if (correctionMethod != "qvalue") {
apvPAdj[, j] <- anota2seqAdjustPvals(pVals = apvFP[,
j], correctionMethod = correctionMethod)
}
if (correctionMethod == "qvalue") {
apvPAdj[, j] <- anota2seqAdjustPvalsQ(pVals = apvFP[,
j])
}
}
statsList <- list()
for (j in 1:dim(contMat)[2]) {
tmpMat <- cbind(apvSlope, apvSlopeP, unadjustedResidError,
apvEff[, j], apvMSerror[, j], apvF[, j], residDf,
apvFP[, j], apvPAdj[, j])
colnames(tmpMat) <- c("apvSlope", "apvSlopeP", "unadjustedResidError",
"apvEff", "apvMSerror", "apvF", "residDf", "apvP",
"apvPAdj")
statsList[[j]] <- tmpMat
}
contrastMat <- contrasts(tmpList$phenoType)
contrastNames <- colnames(contMat)
abList <- list()
statsListRvm <- list()
message("\tCalculating RVM statistics\n")
jpeg(paste(fileStem, "_rvm_fit_for_all_contrasts_group.jpg",
sep = ""), width = 800, height = c((nPheno - 1) *
400), quality = 100)
par(mfrow = c(c(nPheno - 1), 2))
for (j in 1:c(nPheno - 1)) {
message("\tAssessing contrast", j, "\n")
anota2seqPlotIGFit(apvMSerror[, j], residDf[1], qqName = paste("Fit for contrast",
j))
tmpRVM <- anota2seqPerformRVM(MS = apvEff[, j] * apvEff[,
j], Df = apvDf[, j], residDf = residDf, residMS = apvMSerror[,
j])
apvRvmMSerror[, j] <- tmpRVM$residMSRvm
residRvmDf[, j] <- tmpRVM$residDfRvm
apvRvmF[, j] <- tmpRVM$rvmFval
apvRvmP[, j] <- tmpRVM$rvmP
abList[[j]] <- tmpRVM$ab
if (correctionMethod != "qvalue") {
apvRvmPAdj[, j] <- anota2seqAdjustPvals(pVals = apvRvmP[,
j], correctionMethod = correctionMethod)
}
if (correctionMethod == "qvalue") {
apvRvmPAdj[, j] <- anota2seqAdjustPvalsQ(pVals = apvRvmP[,
j])
}
}
dev.off()
for (j in 1:dim(contMat)[2]) {
tmpMat <- cbind(apvSlope, apvSlopeP, apvEff[, j],
apvRvmMSerror[, j], apvRvmF[, j], residRvmDf[,
j], apvRvmP[, j], apvRvmPAdj[, j])
tmpColnames <- c("apvSlope", "apvSlopeP", "apvEff",
"apvRvmMSerror", "apvRvmF", "residRvmDf", "apvRvmP",
"apvRvmPAdj")
colnames(tmpMat) <- tmpColnames
statsListRvm[[j]] <- tmpMat
}
if(analysis[reg]=="total mRNA"){
dataT <- dataP
dataP <- NULL
}
if(analysis[reg] == "buffering"){
tmpDataT <- dataT
tmpDataP <- dataP
dataP <- tmpDataT
dataT <- tmpDataP
}
if(is.null(Anota2seqDataSet@deltaData)){
Anota2seqDataSet@deltaData <- rep(list(NULL),dim(Anota2seqDataSet@contrasts)[2])
for(cont in 1:dim(Anota2seqDataSet@contrasts)[2]){
Anota2seqDataSet@deltaData[[cont]] <- anota2seqCalculateDeltaData(dataP=Anota2seqDataSet@dataP,
dataT=Anota2seqDataSet@dataT,
phenoVec=Anota2seqDataSet@phenoVec,
useIds = rownames(Anota2seqDataSet@dataP),
contrasts=Anota2seqDataSet@contrasts,
selContr=cont)
}
}
outputList <- new("Anota2seqOutput",
apvStats = statsList,
apvStatsRvm = statsListRvm,
correctionMethod = correctionMethod,
usedContrasts = contrastMat,
abList = abList)
if(analysis[reg] == "translated mRNA"){
Anota2seqDataSet@translatedmRNA <- outputList
message("End of translated mRNA analysis.\n")
}
if(analysis[reg] == "total mRNA"){
Anota2seqDataSet@totalmRNA <- outputList
message("End of total mRNA analysis.\n")
}
if(analysis[reg]== "translation"){
Anota2seqDataSet@translation <- outputList
message("End of analysis of translation.\n")
}
if(analysis[reg] == "buffering"){
Anota2seqDataSet@buffering <- outputList
message("End of analysis of translational buffering.\n")
}
}
return(Anota2seqDataSet)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.