#' Plot the non-parametric response functions
#'
#' @description Plots a number of response functions over the observed range of
#' the environmental score. If no taxa are provided those who react most
#' strongly to the environmental score are chosen.
#'
#' @param RCM an RCM object
#' @param taxa a character vector of taxa to be plotted
#' @param type a character string, plot the response function on the log-scale
#' ('link') or the abundance scale 'response', similar to predict.glm().
#' @param logTransformYAxis a boolean, should y-axis be log transformed?
#' @param addSamples a boolean, should sample points be shown?
#' @param samSize a sample variable name or a vector of length equal to the
#' number of samples, for the sample sizes
#' @param Dim An integer, the dimension to be plotted
#' @param nPoints the number of points to be used to plot the lines
#' @param labSize the label size for the variables
#' @param yLocVar the y-location of the variables, recycled if necessary
#' @param yLocSam the y-location of the samples, recycled if necessary
#' @param Palette which color palette to use
#' @param addJitter A boolean, should variable names be jittered to make
#' them more readable
#' @param nTaxa an integer, number of taxa to plot
#' @param angle angle at which variable labels should be turned
#' @param legendLabSize size of the legend labels
#' @param legendTitleSize size of the legend title
#' @param axisLabSize size of the axis labels
#' @param axisTitleSize size of the axis title
#' @param lineSize size of the response function lines
#' @param ... Other argumens passed on to the ggplot() function
#'
#' @return Plots a ggplot2-object to output
#' @export
#' @import ggplot2
#' @import phyloseq
#' @importFrom stats runif
#' @seealso \code{\link{RCM}}, \code{\link{plot.RCM}},\code{\link{residualPlot}}
#' @examples
#' data(Zeller)
#' require(phyloseq)
#' tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
#' prune_samples(sample_names(Zeller)[1:50], Zeller))
#' #Subset for a quick fit
#' zellerRCMnp = RCM(tmpPhy, k = 2,
#' covariates = c('BMI','Age','Country','Diagnosis','Gender'),
#' round = TRUE, responseFun = 'nonparametric')
#' plotRespFun(zellerRCMnp)
plotRespFun = function(RCM, taxa = NULL, type = "link",
logTransformYAxis = FALSE, addSamples = TRUE,
samSize = NULL, Dim = 1L, nPoints = 100L, labSize = 2.5,
yLocVar = NULL, yLocSam = NULL, Palette = "Set3", addJitter = FALSE,
nTaxa = 9L, angle = 90, legendLabSize = 15,
legendTitleSize = 16, axisLabSize = 14,
axisTitleSize = 16, lineSize = 0.75, ...) {
if (is.null(RCM$nonParamRespFun)) {
stop("This function can only be called
on non-parametric response functions! \n")
}
if (!type %in% c("link", "response")) {
stop("Specify type = 'link' or 'response'!\n")
}
# A function to predict new values
predictFun = function(taxon, x) {
if (length(RCM$nonParamRespFun[[
paste0("Dim", Dim)]]$splinesList[[taxon]])) {
cbind(1, x, predict(RCM$nonParamRespFun[[
paste0("Dim", Dim)]]$splinesList[[taxon]],
x = x)$y) %*% c(RCM$nonParamRespFun[[
paste0("Dim", Dim)]]$taxonCoef[[taxon]],1)
} else {
getModelMat(x, RCM$degree) %*% RCM$nonParamRespFun[[paste0("Dim",
Dim)]]$taxonCoef[[taxon]]
}
}
# The range of sample scores
sampleScoreRange = range(RCM$covariates %*% RCM$alpha[, Dim])
sampleScoreSeq = seq(sampleScoreRange[1], sampleScoreRange[2],
length.out = nPoints)
if (is.null(taxa)) {
# If taxa not provided, pick the ones that react most strongly
intsNonParam = RCM$nonParamRespFun[[paste0("Dim", Dim)]][["intList"]]
# The integrals
taxa = taxa_names(RCM$physeq)[intsNonParam > quantile(intsNonParam,
(ntaxa(RCM$physeq) - nTaxa)/ntaxa(RCM$physeq))]
}
df = data.frame(sampleScore = sampleScoreSeq, lapply(taxa, predictFun,
x = sampleScoreSeq))
names(df)[-1] = taxa
dfMolt = reshape2::melt(df, id.vars = "sampleScore",
value.name = "responseFun",
variable.name = "Taxon")
if (type == "response") {
dfMolt$responseFun = exp(dfMolt$responseFun) + 1e-09
}
plot = ggplot(data = dfMolt, aes_string(x = "sampleScore",
y = "responseFun",
group = "Taxon", colour = "Taxon"), ...) +
geom_line(size = lineSize) +
xlab(paste("Environmental score of dimension", Dim)) +
ylab(ifelse(type ==
"link", "Expected abundance", "Response function on count scale")) +
scale_y_continuous(trans = if (logTransformYAxis)
"log10" else "identity", labels = if (logTransformYAxis)
function(x) {
sprintf("%.4f", x)
} else identity)
# Also add the associated elements of the environmental gradient in the
# upper margin
textDf = data.frame(text = rownames(RCM$alpha), x = RCM$alpha[, Dim] *
min(abs(sampleScoreRange))/max(abs(RCM$alpha[, Dim])))
textDf = textDf[order(textDf$x), ]
textDf$y = (if (is.null(yLocVar))
(max(dfMolt$responseFun) + min(dfMolt$responseFun))/2 else yLocVar)
plot = plot + geom_text(data = textDf, mapping = aes_string(x = "x",
y = "y", label = "text"), inherit.aes = FALSE,
angle = angle, size = labSize) +
scale_colour_brewer(palette = Palette)
# Finally add a dashed line for the independence model, and a straight
# line for the 0 environmental gradient
plot = plot + geom_hline(yintercept = switch(type, link = 0, response = 1),
linetype = "dashed", size = 0.3) +
geom_vline(xintercept = 0, size = 0.15,
linetype = "dotted")
# If samples required, add them too, as marks of different heights
if (addSamples) {
dfSam = data.frame(x = RCM$covariates %*% RCM$alpha[, Dim])
dfSam$Size = if (length(samSize) == 1) {
get_variable(RCM$physeq, varName = samSize)
} else if (length(samSize) == ncol(RCM$X))
samSize else NULL
dfSam$y = (if (is.null(yLocSam))
min(dfMolt$responseFun) * 0.8 else yLocSam) + if (addJitter)
runif(min = -1, max = 1, n = nrow(RCM$alpha)) *
diff(range(dfMolt$responseFun))/20 else 0
if (!is.null(samSize)) {
plot = plot + geom_point(inherit.aes = FALSE, fill = NA,
mapping = aes_string(x = "x",
y = "y", size = "Size"), data = dfSam, shape = 124)
} else {
plot = plot + geom_point(inherit.aes = FALSE, fill = NA,
mapping = aes_string(x = "x",
y = "y"), shape = 124, data = dfSam, size = 1)
}
plot = plot + scale_size_discrete(name = if (!is.null(samSize))
samSize else "")
}
# Adapt the text sizes
plot = plot + theme_bw() +
theme(axis.title = element_text(size = axisTitleSize),
axis.text = element_text(size = axisLabSize),
legend.title = element_text(size = legendTitleSize),
legend.text = element_text(size = legendLabSize))
plot
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.