R/F_NBcolInfl.R

Defines functions NBcolInfl

Documented in NBcolInfl

#' The influence function for the column scores
#' @param rcm an rcm object
#' @param Dim the required dimension
#'
#' @return A list with components
#' \item{score}{a matrix with components of the score function}
#' \item{InvJac}{A square matrix of dimension p with the components of the
#'  Jacobian related to the column scores}
NBcolInfl = function(rcm, Dim = 1) {
    reg = rcm$psis[Dim] * rcm$rMat[, Dim]
    mu = extractE(rcm, seq_len(Dim))
    rcm$X  = correctXMissingness(rcm$X, mu, rcm$NApresent)
    #Take also lower dimensions into account here
    thetaMat = matrix(byrow = TRUE, nrow = nrow(rcm$X),
        ncol = ncol(rcm$X), data = rcm$thetas[,
            switch(as.character(Dim), `0` = "Independence",
                `0.5` = "Filtered", paste0("Dim",
                Dim))])
    lambdaCol = rcm$lambdaCol[seq_k(Dim)]
    cMatK = rcm$cMat[seq_len(Dim - 1), ,
        drop = FALSE]
    tmp = if (Dim > 1)
        lambdaCol[-c(1, 2)] %*% cMatK else 0

    score = t(t((reg * (rcm$X - mu)/(1 + mu/thetaMat))) +
        rcm$colWeights * (lambdaCol[1] +
            lambdaCol[2] * 2 * rcm$cMat[Dim,] +
            tmp))

    JacobianInv = solve(NBjacobianCol(beta = c(rcm$cMat[Dim,
        ], lambdaCol), X = rcm$X, reg = reg,
        thetas = thetaMat, muMarg = mu, k = Dim,
        p = nrow(rcm$X), n = ncol(rcm$X),
        colWeights = rcm$colWeights, nLambda = length(lambdaCol),
        cMatK = cMatK, allowMissingness = rcm$NApresent))
    # Inverse Jacobian

    # After a long thought: The X's do not
    # affect the estimation of the lambda
    # parameters! Matrix becomes too large:
    # return score and inverse jacobian
    return(list(score = score, InvJac = JacobianInv[seq_len(ncol(rcm$X)),
        seq_len(ncol(rcm$X))]))
}
CenterForStatistics-UGent/RCM documentation built on April 24, 2023, 8:26 p.m.