## ------------------------------------------------------------
## (wh) 05 Feb 2005
## Test and benchmark the three different implementations of
## graph intersection
## Results: for sparse graphs (e.g. nodes=edges=2000), intersection3
## is fastest; for dense graphs (e.g. nodes=200, edges=10000),
## intersection2 is faster. With the given parameters, I obtained:
##
## Sparse
## t1 27.74 0.23 58.75 0 0
## t2 27.35 0.11 61.68 0 0
## t3 5.03 0.02 10.98 0 0
##
## Dense:
## t1 2.61 0.00 2.77 0 0
## t2 1.13 0.01 1.57 0 0
## t3 6.28 0.01 7.15 0 0
library("graph")
options(error=recover)
nodes = 2000; edges = 2000 ## sparse
## nodes = 200; edges = 10000 ## dense
V = paste(formatC(1:nodes, width=5, flag="0"))
B = 5
set.seed(123)
g1 <-lapply(1:B, function(i) randomEGraph(V=V, edges=edges))
g2 <-lapply(1:B, function(i) randomEGraph(V=V, edges=edges))
t3 <- system.time(
i3 <- mapply(intersection3, g1, g2)
)
t1 <- system.time(
i1 <- mapply(intersection, g1, g2)
)
t2 <- system.time(
i2 <- mapply(intersection2, g1, g2)
)
identical.graphs = function(g1, g2) {
if(!identical(nodes(g1), nodes(g2)))
stop("Baeh 1")
e1 <- edges(g1)
e2 <- edges(g2)
s = mapply(function(x,y) all(sort(x)==sort(y)), e1, e2)
if(!all(s))
stop("Baeh 2")
return(TRUE)
}
cat("system.time:\n")
print(rbind(t1,t2,t3))
## Check whether all are identical
cat("Now checking:\n")
for(i in seq(along=i1)) {
stopifnot(identical.graphs(i1[[i]], i2[[i]]))
stopifnot(identical.graphs(i1[[i]], i3[[i]]))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.