R/random.R

Defines functions randomNodeGraph randomEGraph randomGraph

Documented in randomEGraph randomGraph randomNodeGraph

##Copyright R. Gentleman, 2002, all rights reserved

##code for generating random graphs

##two different methods of generating random graphs on a given set of
##nodes
##M1: randomly generate edges from the choose(|V|, 2) possible edges
##M2: given V and a set of shared attributes M, select for each node
##    of V a subset of M. Then compute edges according to whether
##    nodes share common elements of M


##M2: sample "properties" from M with prob p

randomGraph <- function(V, M, p, weights = TRUE)
{
    if( any(duplicated(V)) )
       stop("node names must be unique")
    V = as.character(V)

    lenM <- length(M)
    lenV <- length(V)
    nSel <- lapply(V, function(x)
                 M[sample(c(TRUE,FALSE), lenM, TRUE, prob=c(p, 1-p))])
    lens <- sapply(nSel, length)
    objs <- unlist(nSel)
    wh <- rep(seq_len(lenV), lens)
    rval <- rep(list(list(edges=numeric(0))), lenV)
    names(rval) <- V
    tmp <- split(wh, objs)
    for( vec in tmp )
      for(i in vec)
       for(j in vec)
          if( i != j ) {
              pos <- match(j, rval[[i]]$edges)
              if(is.na(pos) ) {
                  rval[[i]]$edges <- c(rval[[i]]$edges, j)
                  if (weights) {
                      ln <-length(rval[[i]]$edges)
                      rval[[i]]$weights <- c(rval[[i]]$weights, 1)
                      names(rval[[i]]$weights)[ln] <- j
                  }
              }
              else
                if (weights)
                  rval[[i]]$weights[[pos]] <- rval[[i]]$weights[[pos]]+1
          }
    graphNEL(nodes = V, edgeL=rval)
}

##  gg<-randomGraph(letters[1:10], 1:4, .3)


## Random Edge Graph
randomEGraph <- function(V, p, edges)
{
  nNodes <- length(V)
  nEdges <- nNodes*(nNodes-1)/2

  if( any(duplicated(V)) )
     stop("elements of 'V' must be unique")
  if( !xor(missing(p), missing(edges)) )
    stop("specify either 'edges' or 'p'")
  if( !missing(p) && (!is.numeric(p) || length(p)!=1 || 0>p || p>1 ))
    stop("for 'p', specify a number between 0 and 1")
  if( !missing(edges) && (length(edges) != 1 || edges < 0 || edges > nEdges))
    stop("for 'edges', specify a number between 0 and ", nEdges)

  ## sample the edges
  if(!missing(p)) {
    i <- which(runif(nEdges) <= p)
  } else {
    i <- sample(nEdges, replace=FALSE, size=edges)
  }
  ## convert to from-to matrix
  ft <- int2ftM(i)
  
  ## replace integers by node names
  ft <- cbind(V[ft[,1]], V[ft[,2]])
  return(ftM2graphNEL(ft, V=V, edgemode="undirected"))
}

randomNodeGraph <- function(nodeDegree)
{
    if( any(nodeDegree < 0 ) )
        stop("only positive degrees allowed")

    numEdge <- sum(nodeDegree)
    if( numEdge %% 2 != 0 )
        stop("sum of degrees must be even")

    wh <- sample(numEdge)
    Nodes <- rep(names(nodeDegree), nodeDegree)
    if( is.null(Nodes) )
        stop("nodes must be named")

    from <- Nodes[wh[seq_len(numEdge/2)]]
    to <- Nodes[wh[(1+numEdge/2):numEdge]]
    edL <- split(to, from)
    eN <- names(nodeDegree)
    outL <- lapply(edL, function(x) list(edges=match(x, eN),
                                         weights=rep(1, length(x))))

    oL <- rep(list(list(numeric(0))), length(eN))
    names(oL) <- eN
    oL[names(outL)] <- outL
    g <- graphNEL(nodes=names(oL), edgeL=oL,
             edgemode="directed")
    g
}
Bioconductor/graph documentation built on Nov. 2, 2024, 7:25 a.m.