### FIXME: have this facet by sample after we have sample-level data structure
## This will display the distribution aggregated over all given chromosomes
islandDepthPlot <- function(x, maxDepth = 20L)
{
tab <- table(unlist(viewMaxs(slice(x, lower = 1))))
df <- data.frame(depth = as.numeric(names(tab)), count = as.numeric(tab))
xyplot(log(count) ~ depth, df,
subset = (depth <= maxDepth),
pch = 16, type = c("p", "g"),
panel = function(x, y, ...) {
lambda <- 2 * exp(y[2]) / exp(y[1])
null.est <- function(xx) {
xx * log(lambda) - lambda - lgamma(xx + 1)
}
log.N.hat <- null.est(1) - y[1]
panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")
panel.xyplot(x, y, ...)
})
}
peakCutoff <- function(cov, fdr.cutoff = 0.001, k = 2:20)
{
## an implementation of the idea in Robertson et al to assess
## sufficiency of sampling depth: choose minimum cutoff that gives
## an FDR < pre-specified value
s <- slice(cov, lower = 1)
y <- table(unlist(viewMaxs(s)))
lambda <- 2 * y[2] / y[1]
n <- exp(log(y[1]) - dpois(1, lambda, log = TRUE))
exp.fd <- n * ppois(k-1, lambda, lower.tail = FALSE)
obs.d <- integer(length(k))
for (i in seq_along(k))
{
obs.d[i] <- sum(y[as.integer(names(y)) >= k[i]])
}
FDR <- ifelse(obs.d == 0, 0, exp.fd / obs.d)
fdr.ok <- which(FDR < fdr.cutoff)
if (length(fdr.ok) < 1)
stop("No cutoff with low enough FDR found")
fdr.chosen <- fdr.ok[1]
k[fdr.chosen-1] + (FDR[fdr.chosen-1] - fdr.cutoff) /
(FDR[fdr.chosen-1] - FDR[fdr.chosen])
}
## Not exported
## Useful summary functions for use with gdApply()
## e.g., as(gdApply(x, countSummary), "data.frame")
## x is a list at the lane->chromosome level, with components "+" and "-"
## countSummary <- function(x)
## {
## npos <- length(x$"+")
## nneg <- length(x$"-")
## data.frame(n = npos + nneg, d = npos - nneg, r = npos / nneg)
## }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.