normalize.AffyBatch.qspline <- function(abatch, type=c("together","pmonly","mmonly","separate"),...) {
type <- match.arg(type)
if (type == "together"){
Index <- unlist(indexProbes(abatch,"both"))
intensity(abatch)[Index,] <- normalize.qspline(intensity(abatch)[Index,], ...)
} else if (type == "pmonly"){
Index <- unlist(indexProbes(abatch,"pm"))
intensity(abatch)[Index,] <- normalize.qspline(intensity(abatch)[Index,], ...)
} else if (type == "mmonly"){
Index <- unlist(indexProbes(abatch,"mm"))
intensity(abatch)[Index,] <- normalize.qspline(intensity(abatch)[Index,], ...)
} else if (type == "separate"){
Index <- unlist(indexProbes(abatch,"pm"))
intensity(abatch)[Index,] <- normalize.qspline(intensity(abatch)[Index,], ...)
Index <- unlist(indexProbes(abatch,"mm"))
intensity(abatch)[Index,] <- normalize.qspline(intensity(abatch)[Index,], ...)
}
#set.na.spotsd(listcel)
normhisto <- vector("list", length=ncol(intensity(abatch)))
##need to use MIAME for this
for (i in 1:length(abatch)) {
normhisto[[i]] <- list(name="normalized by qspline")
}
attr(abatch, "normalization") <- normhisto
return(abatch)
}
normalize.qspline <- function(x,
target = NULL,
samples = NULL,
fit.iters = 5,
min.offset = 5,
spline.method = "natural", # c("fmm", "natural", "periodic")
smooth = TRUE,
spar = 0, # smoothing parameter
p.min = 0,
p.max = 1.0,
incl.ends = TRUE,
converge = FALSE,
verbose = TRUE,
na.rm = FALSE
){
if (is.null(target))
target <- exp(apply(log(x), 1, mean))
x.n <- dim(x)[1]
m <- dim(x)[2]
if (is.null(samples))
samples <- max(round(x.n/1000), 100)
else
if (samples < 1)
samples <- round(samples * x.n)
p <- (1:samples) / samples
p <- p[ which(p <= p.max) & which(p >= p.min) ]
samples <- length(p)
k <- fit.iters
if (na.rm==TRUE)
y.n <- sum(!is.na(target))
else
y.n <- length(target)
py.inds <- as.integer(p * y.n)
y.offset <- round(py.inds[1]/fit.iters)
if (y.offset <= min.offset) {
y.offset <- min.offset;
k <- round(py.inds[1]/min.offset)
}
if (k <= 1) {
warning("'k' found is non-sense. using default 'fit.iter'")
k <- fit.iters
}
y.offset <- c(0, array(y.offset, (k-1)))
y.order <- order(target)
fx <- matrix(0, x.n,m)
if(verbose==TRUE)
print(paste("samples=",samples, "k=", k, "first=", py.inds[1]))
for (i in 1:m) {
# to handel NA values for each array
if (na.rm==TRUE)
x.valid <- which(!is.na(x[,i]))
else
x.valid <- 1:x.n
x.n <- length(x.valid)
px.inds <- as.integer(p * x.n)
x.offset <- round(px.inds[1]/fit.iters)
if (x.offset<=min.offset) {
x.offset <- min.offset;
k <- min(round(px.inds[1]/min.offset), k)
}
x.offset <- c(0, array(x.offset, (k-1)))
x.order <- order(x[,i]) # NA's at the end (?)
y.inds <- py.inds ## must be reset each iteration
x.inds <- px.inds
for (j in 1:k) {
y.inds <- y.inds - y.offset[j]
x.inds <- x.inds - x.offset[j]
ty.inds <- y.inds
tx.inds <- x.inds
if (verbose==TRUE)
print(paste("sampling(array=", i, "iter=", j, "off=",
x.inds[1], -x.offset[j], y.inds[1], -y.offset[j], ")"))
if (converge==TRUE) {
ty.inds <- as.integer(c(1, y.inds))
tx.inds <- as.integer(c(1, x.inds))
if (j > 1) {
ty.inds <- c(ty.inds, y.n)
tx.inds <- c(tx.inds, x.n)
}
}
qy <- target[y.order[ty.inds]]
qx <- x[x.order[tx.inds],i]
if (smooth==TRUE) {
sspl <- smooth.spline(qx, qy, spar=spar)
qx <- sspl$x
qy <- sspl$y
}
fcn <- splinefun(qx, qy, method=spline.method)
fx[x.valid,i] <- fx[x.valid,i] + fcn(x[x.valid,i])/k
}
if (na.rm==TRUE) {
invalid <- which(is.na(x[,i]))
fx[invalid,i] <- NA
}
}
return(fx)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.