mas5 <- function(object,normalize=TRUE,sc = 500, analysis = "absolute",...){
res <- expresso(object,bgcorrect.method="mas",pmcorrect.method="mas",normalize=FALSE,summary.method="mas",...)
if(normalize)
res <- affy.scalevalue.exprSet(res,sc=sc,analysis=analysis)
return(res)
}
mas5calls.ProbeSet <- function(object,
tau=0.015, alpha1=0.04, alpha2=0.06,
ignore.saturated=TRUE){
if(alpha1 < 0) {stop("alpha1 must be > 0 "); }
if(alpha1 > alpha2) {stop("alpha2 must be > alpha1 "); }
if(alpha2 > 1) {stop("alpha2 must be <1 "); }
## Saturation:
## shouldn't be a problem with new scanners
##or those that have had an engineer visit
if(ignore.saturated) { sat <- 46000; }
else { sat <- -1; }
pms <- pm(object)
mms <- mm(object)
pns <- rep(object@id,nrow(pms))
unique.pns <- unique(pns)
pvals<-sapply(1:length(pms[1,]),function(x) {
.C("DetectionPValue",as.double(pms[,x]),as.double(mms[,x]),as.character(pns),as.integer(length(mms[,x])),
as.double(tau),as.double(sat),dpval=double(length(unique.pns)),length(unique.pns), PACKAGE="affy")$dpval;
});
calls <- sapply(pvals,function(y) { if(y < alpha1) { return("P") } else { if(y < alpha2) { return("M") } else { return("A") }}});
return(list(call=calls,pval=pvals))
}
mas5calls.AffyBatch <- function(object, ids=NULL, verbose=TRUE,
tau=0.015, alpha1=0.04, alpha2=0.06,
ignore.saturated=TRUE) {
if(alpha1 < 0) {stop("alpha1 must be > 0 "); }
if(alpha1 > alpha2) {stop("alpha2 must be > alpha1 "); }
if(alpha2 > 1) {stop("alpha2 must be <1 "); }
if(verbose) cat("Getting probe level data...\n");
pms <-as.matrix(pm(object));
mms <-as.matrix(mm(object));
# Saturation:
# shouldn't be a problem with new scanners
##or those that have had an engineer visit
if(ignore.saturated) { sat <- 46000; }
else { sat <- -1; }
pns <- probeNames(object);
o <- order(pns)
pns <- pns[o]
pms <- pms[o,,drop=FALSE]
mms <- mms[o,,drop=FALSE]
unique.pns <- sort(unique(pns));
if(verbose) cat("Computing p-values\n");
p<-sapply(1:length(pms[1,]),function(x) {
.C("DetectionPValue",as.double(pms[,x]),as.double(mms[,x]),as.character(pns),as.integer(length(mms[,x])),
as.double(tau),as.double(sat),dpval=double(length(unique.pns)),length(unique.pns), PACKAGE="affy")$dpval;
});
rownames(p) <- unique.pns;
colnames(p) <- sampleNames(object)
if(verbose) cat("Making P/M/A Calls\n");
calls <- sapply(p,function(y) { if(y < alpha1) { return("P") } else { if(y < alpha2) { return("M") } else { return("A") }}});
calls <- matrix(calls,nrow=nrow(p),ncol=ncol(p));
colnames(calls) <- sampleNames(object)
rownames(calls) <- rownames(p)
if(!is.null(ids)){
calls <- calls[ids,,drop=FALSE]
p <- p[ids,,drop=FALSE]
}
eset <- new("ExpressionSet",
phenoData=phenoData(object),
## featureData picked up from object
experimentData=experimentData(object),
annotation=annotation(object),
protocolData=protocolData(object),
exprs=calls,
se.exprs=p
)
return(eset)
}
mas5.detection <- function(mat, tau=0.015, alpha1=0.04, alpha2=0.06,
exact.pvals=FALSE, cont.correct=FALSE) {
## CONSTANTS
saturation.point <- 46000 # not a user parameter
mat.r <- (mat[,1]-mat[,2])/(mat[,1]+mat[,2])
## SANITY CHECKING
if ( !is.matrix(mat) || length(dim(mat))!=2 || dim(mat)[2]!=2 ||
dim(mat)[1] < 1 || !is.numeric(mat) )
stop("Invalid mat matrix.")
if ( !is.numeric(tau) )
stop("Invalid tau.")
if ( !is.numeric(alpha1) || !is.numeric(alpha2) ||
alpha1 <= 0 || alpha1 >= alpha2 || alpha2 >= 0.5 )
stop("Invalid alpha1 or alpha2.")
if ( !is.logical(exact.pvals) )
stop("Invalid exact.pvals.")
if ( !is.logical(cont.correct) )
stop("Invalid cont.correct.")
## DEALING WITH SATURATION; COMPUTING THE P-VALUE
## According to the Bioinformatics paper:
## * If all MM's are saturated, then call present
## * Otherwise discard pairs with a saturated MM
## According to the Affymetrix whitepaper:
## * If all probe-pairs are saturated, then call present with pval=0
## * If an MM is saturated, then we discard the pair
## * If a PM and MM are within tau of each other, we discard the pair
## So we're going with:
## * If all MM's are saturated, set pval=0 and don't use Wilcoxon
## * Discard probe-pairs when MM is saturated or the PM,MM are within tau
## of each other
## * Compute the p-value using Wilcoxon's signed rank test on the retained
## probe-pairs
is.mm.saturated <- function(probe.pair, saturation.point)
probe.pair[2] >= saturation.point
is.retained <- function(probe.pair, saturation.point, tau)
!(is.mm.saturated(probe.pair,saturation.point) ||
abs(diff(probe.pair)) <= tau)
if ( all(apply(mat,1,is.mm.saturated,saturation.point)) )
pval <- 0
else {
retained <- apply(mat, 1, is.retained, saturation.point, tau)
pval <- wilcox.test(mat.r[retained],
alternative="greater", mu=tau, paired=FALSE,
exact=exact.pvals, correct=cont.correct,
conf.int=FALSE)$p.value
}
## DETECTION CALL
if ( pval < 0 || pval > 1 )
warning("Computed an unusual p-value outside the range [0,1].")
if ( pval < alpha1 )
call <- "P"
else if ( pval < alpha2 )
call <- "M"
else
call <- "A"
## DONE
return(list(pval=pval, call=call))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.