loess.normalize <- function(mat,subset=sample(1:(dim(mat)[2]),5000),
epsilon=10^-2,maxit=1,log.it=TRUE,verbose=TRUE,span=2/3,
family.loess="symmetric")
{
.Deprecated("normalize.loess", "affy")
J <- dim(mat)[2]
II <- dim(mat)[1]
newData <- mat
if(log.it){
mat <- log2(mat)
newData <- log2(newData)
}
change <- epsilon +1
fs <- matrix(0,II,J)##contains what we substract
iter <- 0
w <- c(0,rep(1,length(subset)),0) ##this way we give 0 weight to the
##extremes added so that we can interpolate
while(iter < maxit){
iter <- iter+1
means <- matrix(0,II,J) ##contains temp of what we substract
for(j in 1:(J-1)){
for(k in (j+1):J){
y <- newData[,j]-newData[,k]
x <-(newData[,j]+newData[,k])/2
index <- c(order(x)[1],subset,order(-x)[1])
##put endpoints in so we can interpolate
xx <- x[index]
yy <- y[index]
aux <-loess(yy~xx,span=span,degree=1,weights=w,family=family.loess)
aux <- predict(aux,data.frame(xx=x))/J
means[,j] <- means[,j] + aux
means[,k] <- means[,k] - aux
if(verbose) cat("Done with",j,"vs",k," in iteration ",iter,"\n")
}
}
fs <- fs+means
newData <- mat-fs
change <- max(colMeans((means[subset,])^2))
if(verbose) cat(iter,change,"\n")
oldfs <- fs
}
if(change>epsilon & maxit>1) warning(paste("No convergence after",maxit,"iterations.\n"))
if(log.it) return(2^newData)
else return(newData)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.