fit.li.wong <- function(data.matrix, remove.outliers=TRUE,
normal.array.quantile=0.5,
normal.resid.quantile=0.9,
large.threshold=3,
large.variation=0.8,
outlier.fraction=0.14,
delta = 1e-06,maxit=50,outer.maxit=50, verbose=FALSE, ...){
if(missing(data.matrix)) stop("Argument data.matrix missing, with no default")
II <- dim(data.matrix)[1] ##II instrad of I cause I is a fuction in R
J <- dim(data.matrix)[2]
if(J==1){
warning("Li and Wong's algorithm is not suitable when only one probe pair")
return(list(theta = as.vector(data.matrix), phi = 1, sigma.eps = NA, sigma.theta = NA, sigma.phi=NA, theta.outliers=NA, phi.outliers=NA, single.outliers=NA,convergence1=NA,convergence2=NA,iter = NA, delta = NA))
}
cI <- II ##current I
cJ <- J ##current J
theta.outliers.old <- rep(FALSE, II) ##ith entry will be true if theta_i is an outlier
phi.outliers.old <- rep(FALSE, J) ##jth entry will be true if phi_j is an outlier
single.outliers.old <- matrix(FALSE, II, J) ##ij entry will be true if y_is an outlier
theta.outliers <- theta.outliers.old ##need this to now if change ocurred in outliers
phi.outliers <- phi.outliers.old ##need this to know if chages occured in outlies
single.outliers <- single.outliers.old
flag1 <- NA ##these will be false if convergence not reacher,
flag2 <- NA ## this will be false if outliers respectively cuase iter to stop
if(remove.outliers){
flag1 <- TRUE; flag2<-TRUE
original.data.matrix <- data.matrix ##so we can get it back after outlier removal
change.theta <- 1 #start with 1
change.phi <- 1
change.single <- 1
outer.iter <- 0
while(flag1 & flag2 & change.theta+change.phi+change.single >0 & outer.iter < outer.maxit) {
outer.iter <- outer.iter + 1
if((outer.iter%%3==0 & change.theta>0) |
(outer.iter%%3==1 & change.phi>0)){ #something has to change
##starting values
phi <- colMeans(data.matrix)
c <- sqrt(cJ/sum(phi[!phi.outliers]^2))
phi <- c * phi
theta <- (data.matrix[, !phi.outliers, drop=FALSE] %*% phi[!phi.outliers, drop=FALSE])/cJ
iter <- 0
change <- 1 #start with one
theta.old <- rep(0, II)
while(change > delta & iter < maxit) {
iter <- iter + 1
phi <- t(data.matrix[!theta.outliers, ,drop=FALSE]) %*% theta[!theta.outliers, drop=FALSE] ##ignore the outliers
c <- sqrt(cJ/sum(phi[!phi.outliers, drop=FALSE]^2))
phi <- c * phi
theta <- (data.matrix[,!phi.outliers, drop=FALSE] %*% phi[!phi.outliers, drop=FALSE])/cJ
change <- max(abs(theta[!theta.outliers] - theta.old[!theta.outliers]))
if(verbose) cat(paste("Outlier iteration:",outer.iter,"estimation iteration:",iter,"chage=",change,"\n"))
theta.old <- theta
}
if(iter>=maxit){ ##convergence not reached. might as well get out
warning(paste("No convergence in inner loop after",iter,"in outerler tieration",outer.iter,"\n"))
flag1 <- FALSE
}
if(mean(phi[!phi.outliers]<0)>.5){ ##for identifiability.. theta*phi = (-theta)*(-phi), i require that most phis are positive
theta <- -theta
phi <- -phi
}
theta <- as.vector(theta)
phi <- as.vector(phi)
data.matrixhat <- outer(theta, phi)
resid <- data.matrix-data.matrixhat
}
##DEALING WITH OUTLIERS
##we alternate removal of outliers
##if even iteration take out thetas that are outliers (as defined by Li and Wong).
if(outer.iter%%3==1){ ## we start with single outliers
single.outliers <- resid > large.threshold*quantile(abs(resid),normal.resid.quantile)
single.outliers[rowSums(single.outliers) > outlier.fraction*cJ,]<-rep(FALSE,J)
##probably chip oulier, defer calling outlier
single.outliers[,colSums(single.outliers) > outlier.fraction*cI]<-rep(FALSE,II)
##probably probe outlier, defer calling outlier
data.matrix[single.outliers] <- data.matrixhat[single.outliers]
data.matrix[!single.outliers] <- original.data.matrix[!single.outliers]
change.single <- sum(abs(single.outliers.old-single.outliers)) #sum will be total of changes
single.outliers.old <- single.outliers
}
else{
sigma.theta <- sqrt(rowSums(resid[, !phi.outliers, drop=FALSE]^2)/(cJ - 1))
sigma.phi <- sqrt(colSums(resid[!theta.outliers, , drop=FALSE]^2)/(cI - 1))
###THETA OUTLIERS
if(outer.iter%%3==2){
theta.outliers <- sigma.theta > large.threshold*quantile(sigma.theta,normal.array.quantile) | theta^2/sum(theta^2) > large.variation
cI <- sum(!theta.outliers)
if(cI<3) {
warning("No convergence achieved, too many outliers")
flag2 <- FALSE
}
##single outliers in outlier chips are not longer single outliers
single.outliers[theta.outliers,] <- rep(FALSE,J)
data.matrix[single.outliers] <- data.matrixhat[single.outliers]
data.matrix[!single.outliers]<-original.data.matrix[!single.outliers]
change.theta <- sum(abs(theta.outliers.old-theta.outliers)) #sum will be total of changes
change.single <- sum(abs(single.outliers.old-single.outliers)) #sum will be total of changes
theta.outliers.old <- theta.outliers
}
##PHI OUTLIERS
else{
phi.outliers <- sigma.phi > large.threshold*quantile(sigma.phi,normal.array.quantile) | phi^2/sum(phi^2) > large.variation | phi <0
cJ <- sum(!phi.outliers)
if(cJ<3) {
warning("No convergence achieved, too many outliers")
flag2 <- FALSE
}
single.outliers[,phi.outliers] <- rep(FALSE,II)
data.matrix[single.outliers] <- data.matrixhat[single.outliers]
data.matrix[!single.outliers]<-original.data.matrix[!single.outliers]
change.phi <- sum(abs(phi.outliers.old-phi.outliers))
change.single <- sum(abs(single.outliers.old-single.outliers)) #sum will be total of changes
phi.outliers.old <- phi.outliers
}
}
if(verbose){
cat("chips used=",cI,", probes used=",cJ,", single outler=",sum(single.outliers),"\n")
cat("Number of changes: single=",change.single,", theta=",change.theta,", phi=",change.phi,"\n",sep="")
}
}
if(outer.iter>=outer.maxit){
warning("No convergence achieved in outlier loop\n")
flag2 <- FALSE
}
all.outliers <- outer(theta.outliers,phi.outliers,FUN="|") | single.outliers
sigma <- sqrt(sum(resid[!all.outliers]^2)/sum(!all.outliers))
##in case we leave iteration and these havent been defined
sigma.theta <- sqrt(rowSums(resid[,!phi.outliers, drop=FALSE]^2)/(cJ - 1))
sigma.phi <- sqrt(colSums(resid[!theta.outliers, ,drop=FALSE]^2)/(cI - 1))
}
###code for NO OUTLIER REMOVAL
else{
flag1 <- TRUE
phi <- colMeans(data.matrix)
c <- sqrt(J/sum(phi^2))
phi <- c * phi
theta <- (data.matrix %*% phi)/J
iter <- 0
change <- 1
theta.old <- rep(0, II)
while(change > delta & iter < maxit) {
iter <- iter + 1
phi <- t(data.matrix) %*% theta
c <- sqrt(J/sum(phi^2))
phi <- c * phi
theta <- (data.matrix %*% phi)/J
change <- max(abs(theta - theta.old))
if(verbose) cat(paste("Iteration:",iter,"chage=",change,"\n"))
theta.old <- theta
}
if(iter>=maxit){
warning(paste("No convergence after",iter,"iterations.\n"))
flag1 <- FALSE
}
if(mean(phi[!phi.outliers]<0)>.5){
##for identifiability.. theta*phi = (-theta)*(-phi), i require that most phis are positive
theta <- -theta
phi <- -phi
}
theta <- as.vector(theta)
phi <- as.vector(phi)
data.matrixhat <- outer(theta, phi)
sigma.theta <- sqrt(rowSums((data.matrix - data.matrixhat)^2)/(J - 1))
sigma.phi <- sqrt(colSums((data.matrix - data.matrixhat)^2)/(II - 1))
sigma <- sqrt(sum((data.matrix - data.matrixhat)^2)/(II * J))
}
return(list(theta = theta, phi = phi, sigma.eps = sigma, sigma.theta = sigma.theta, sigma.phi=sigma.phi,theta.outliers=theta.outliers,phi.outliers=phi.outliers,single.outliers=single.outliers,convergence1=flag1,convergence2=flag2,iter = iter, delta = change))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.