diffExp | R Documentation |
Compute differential expression for case vs control samples. Will produce the file computedEmpGenes.csv
listing empiricaly differentially expressed genes used for RNA-Seq normalization.
diffExp(case_id = NULL, control_id = NULL, source = "octad.small", file = "octad.counts.and.tpm.h5", normalize_samples = TRUE, k = 1, expSet = NULL, n_topGenes = 500, DE_method = c("edgeR",'DESeq2','wilcox','limma'), output = FALSE, outputFolder = NULL, annotate = TRUE)
case_id |
vector of cases used for differential expression. |
control_id |
vector of controls used for differential expression. |
source |
the file for the octad expression matrix. By default, set to |
expSet |
input expression matrix. By default set to |
file |
if |
normalize_samples |
if TRUE, RUVSeq normalization is applied to either EdgeR or DESeq. No normalization needed for limma+voom. |
k |
eiter k=1 (by default), k=2 or k=3, number of factors used in model matrix construction in RUVSeq normalization if |
n_topGenes |
number of empiricaly differentially expressed genes estimated for RUVSeq normalization. Default is 5000. |
DE_method |
edgeR, DESeq2, limma or wilcox DE analysis. |
output |
if |
outputFolder |
path to output folder. By default, the function produces result files in working directory. |
annotate |
if |
res |
|
computedEmpGenes.csv |
|
computeRefTissue,runsRGES
.
#load data.frame with samples included in the OCTAD database phenoDF=get_ExperimentHub_data('EH7274') HCC_primary=subset(phenoDF,cancer=='liver hepatocellular carcinoma'& sample.type == 'primary') #select data case_id=HCC_primary$sample.id #select cases HCC_adjacent=subset(phenoDF,cancer=='liver hepatocellular carcinoma'& sample.type == 'adjacent'&data.source == 'TCGA') #select data control_id=HCC_adjacent$sample.id #select cases res=diffExp(case_id,control_id,source='octad.small',output=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.