#' compile net score across a set of predictor results
#'
#' @details used to compare how individual nets score for different
#' predictor configurations
#' @param scorelist (list) key is dataset name, value is a data.frame
#' containing PATHWAY_NAME and SCORE. This is the output of
#' compileFeatureScores()
#' @return (data.frame) Rownames are union of all nets in the input list.
#' Columns show net scores for each key of the input list. Where a
#' net is not found in a given list, it is assigned the value of NA
#' @examples
#' pathways <- paste("PATHWAY_",1:100,sep="")
#' highrisk <- list()
#' for (k in 1:10) {
#' highrisk[[k]] <- data.frame(PATHWAY_NAME=pathways,
#' SCORE=runif(length(pathways),min=0,max=10),
#' stringsAsFactors=FALSE);
#' }
#' names(highrisk) <- sprintf("Split%i",1:length(highrisk))
#' x <- getNetConsensus(highrisk)
#' @export
getNetConsensus <- function(scorelist) {
out <- scorelist[[1]]
colnames(out)[2] <- names(scorelist)[1]
for (k in 2:length(scorelist)) {
x <- merge(x = out, y = scorelist[[k]], by = "PATHWAY_NAME",
all.x = TRUE, all.y = TRUE)
colnames(x)[k + 1] <- names(scorelist)[k]
out <- x
}
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.