R/plotExplanatoryPCs.R

Defines functions plotExplanatoryPCs

Documented in plotExplanatoryPCs

#' Plot the explanatory PCs for each variable
#'
#' @param object A SingleCellExperiment object containing expression values and experimental information. 
#' Alternatively, a matrix containing the output of \code{\link{getExplanatoryPCs}}.
#' @param nvars_to_plot Integer scalar specifying the number of variables with the greatest explanatory power to plot.
#' This can be set to \code{Inf} to show all variables.
#' @param npcs_to_plot Integer scalar specifying the number of PCs to plot.
#' @param theme_size numeric scalar providing base font size for ggplot theme.
#' @param ... Parameters to be passed to \code{\link{getExplanatoryPCs}}.
#'
#' @details 
#' A density plot is created for each variable, showing the R-squared for each successive PC (up to \code{npcs_to_plot} PCs).
#' Only the \code{nvars_to_plot} variables with the largest maximum R-squared across PCs are shown.
#'
#' If \code{object} is a SingleCellExperiment object, \code{\link{getExplanatoryPCs}} will be called to compute the variance in expression explained by each variable in each gene.
#' Users may prefer to run \code{\link{getExplanatoryPCs}} manually and pass the resulting matrix as \code{object}, in which case the R-squared values are used directly.
#'
#' @return A ggplot object.
#'
#' @export
#' @importFrom utils head
#' @importClassesFrom SingleCellExperiment SingleCellExperiment
#' @importFrom ggplot2 ggplot geom_line xlab ylab coord_cartesian theme_bw scale_y_log10
#'
#' @rdname plotExplanatoryPCs
#' @examples
#' example_sce <- mockSCE()
#' example_sce <- logNormCounts(example_sce)
#' example_sce <- runPCA(example_sce)
#' 
#' plotExplanatoryPCs(example_sce)
plotExplanatoryPCs <- function(object, nvars_to_plot = 10, npcs_to_plot=50, theme_size=10, ...) {
    if (is(object, "SingleCellExperiment")) { 
        rsquared_mat <- getExplanatoryPCs(object, n_dimred=npcs_to_plot, ...)
    } else {
        rsquared_mat <- as.matrix(object)
    }
    rsquared_mat <- head(rsquared_mat, npcs_to_plot) 

    ## Get maximum R^2 for each variable, order by it.
    max_rsquared <- apply(rsquared_mat, 2, max, na.rm=TRUE)
    oo_max <- order(max_rsquared, decreasing = TRUE)

    ## Create the plot.
    chosen_rsquared <- rsquared_mat[, head(oo_max, nvars_to_plot), drop=FALSE]
    ordered_vars <- factor(colnames(chosen_rsquared), levels=colnames(chosen_rsquared)) # preserve order.
    df_to_plot <- data.frame(
        PC=rep(seq_len(nrow(chosen_rsquared)), ncol(chosen_rsquared)),
        Expl_Var=rep(ordered_vars, each=nrow(chosen_rsquared)),
        Pct_Var_Explained=as.numeric(chosen_rsquared) # column major collapse.
    )
    plot_out <- ggplot(df_to_plot, aes(x = .data$PC, y = .data$"Pct_Var_Explained", colour = .data$"Expl_Var")) +
        geom_point(alpha= 1, shape = 16, size = 3) +
        geom_line(alpha = 0.7, linewidth = 2) +
        scale_y_log10(breaks = 10 ^ (-3:2), labels = c(0.001, 0.01, 0.1, 1, 10, 100)) +
        xlab("PC") +
        ylab("% variance explained") +
        coord_cartesian(ylim = c(10 ^ (-3), 100))

    plot_out <- .resolve_plot_colours(plot_out, df_to_plot$Expl_Var, "", fill = FALSE, colour = TRUE)

    if ( requireNamespace("cowplot", quietly = TRUE) ) {
        plot_out <- plot_out + cowplot::theme_cowplot(theme_size)
    } else {
        plot_out <- plot_out + theme_bw(theme_size)
    }

    plot_out
}
Alanocallaghan/scater documentation built on July 18, 2024, 10:58 p.m.