Nothing
#' Predicting drug sensitivity with binary drug-target interaction data
#'
#' A function to predict the drug sensitivity with binary drug-target interaction data using the
#' original maximization and minimization rules
#'
#' @param drug_target_profile the drug-target interaction data. See \code{\link{timma}}.
#' @param sens a drug sensitivity vector.
#' @param loo a logical value indicating whether to use the leave-one-out cross-validation in the model
#' selection process. By default, loo = TRUE.
#' @return A list containing the following components:
#' \item{dummy}{the predicted efficacy for target combinations that can be found from the training data}
#' \item{error}{the prediction errors}
#' \item{prediction}{predicted drug sensitivity}
#' @author Liye He \email{liye.he@@helsinki.fi}
#' @references Tang J, Karhinen L, Xu T, Szwajda A, Yadav B, Wennerberg K, Aittokallio T.
#' Target inhibition networks: predicting selective combinations of druggable targets to block cancer
#' survival pathways. PLOS Computational Biology 2013; 9: e1003226.
#' @examples
#' data(tyner_interaction_binary)
#' data(tyner_sensitivity)
#' results<-timmaBinary(tyner_interaction_binary[, 1:6], tyner_sensitivity[,1])
timmaBinary <- function(drug_target_profile, sens, loo = TRUE) {
# parameter 1: drug_target_profile, drug with selected target profile
# parameter 2: sens, the actual efficacy for the drugs
# parameter 3: loo, flag for applying Leave-one-out or not
# get target numbers
target_number <- ncol(as.matrix(drug_target_profile))
# get drug numbers
drug_number <- nrow(as.matrix(drug_target_profile))
drug_target_profile <- matrix(drug_target_profile, nrow = drug_number, ncol = target_number)
prof <- unique(drug_target_profile)
dec_prof <- apply(prof, 1, function(x) strtoi(paste(x, collapse = ""), base = 2))
dec <- apply(drug_target_profile, 1, function(x) strtoi(paste(x, collapse = ""), base = 2))
# for identical
col_num <- length(dec_prof)
# index for the drug
identical_idx <- sapply(dec, function(x) which(dec_prof == x))
IM_d <- array(NA, dim = c(drug_number, col_num))
IM_subset <- array(Inf, dim = c(drug_number, col_num))
IM_superset <- array(-Inf, dim = c(drug_number, col_num))
for (i in 1:drug_number) {
# get the decimal
IM_d[i, identical_idx[i]] <- 1 * sens[i]
# get the binary set: superset and subset
bin_set <- binarySet(drug_target_profile[i, ])
# ismember function R version: match subset_index<-match(bin_set@subset, dec_graycode[[3]])
subset_index <- dec_prof %in% bin_set$subset
IM_subset[i, subset_index] <- sens[i]
superset_index <- dec_prof %in% bin_set$superset
IM_superset[i, superset_index] <- sens[i]
}
M_d <- sumcpp1(IM_d, drug_number, col_num)
maxval <- maxcpp1(IM_superset, drug_number, col_num)
minval <- mincpp1(IM_subset, drug_number, col_num)
min_subset <- minval$min
min_index <- minval$min_idx
max_superset <- maxval$max
max_index <- maxval$max_idx
# find cell which needs maximization averaging
cell <- is.nan(M_d) & is.finite(max_superset)
cell <- which(cell == TRUE)
if (length(cell) != 0) {
for (i in cell) {
# the drug sets that are the subset of the cell
drug_sub_cell <- !is.infinite(IM_superset[, i])
# the drug index which achieves max sensitivity
index <- max_index[i]
# the dec of the drug with max sensitivity
dec_maxsens <- identical_idx[index]
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_subset[, dec_maxsens] < max_superset[i]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
max_superset[i] <- (max_superset[i] * k + sens[j])/(k + 1)
k <- k + 1
}
}
}
}
cell2 <- is.nan(M_d) & is.finite(min_subset)
cell2 <- which(cell2 == TRUE)
if (length(cell2) != 0) {
for (i in cell2) {
# the drug sets that are the superset of the cell
drug_sub_cell <- !is.infinite(IM_subset[, i])
# the drug index which achieves min sensitivity
index <- min_index[i]
# the dec of the drug with min sensitivity
dec_minsens <- identical_idx[index]
# find the subsets of S(index,:) in S that has higher sensitivity
subsets_small <- IM_superset[, dec_minsens] > min_subset[i]
# find common item with drug_sub_cell and supersets_small
if (length(subsets_small) == 0) {
common_cell2 <- vector("numeric")
} else {
common_cell2 <- which(drug_sub_cell & subsets_small)
}
if (length(common_cell2) != 0) {
# min averaging
k <- 1
for (j in common_cell2) {
min_subset[i] <- (min_subset[i] * k + sens[j])/(k + 1)
k <- k + 1
}
}
}
}
M <- M_d
M[cell] <- max_superset[cell]
M[cell2] <- min_subset[cell2]
# cels that not only have lower boundery and also have upper boundary
average_index <- intersect(cell, cell2)
M[average_index] <- (max_superset[average_index] + min_subset[average_index])/2
# predicted error
error_predict <- rep(NA, drug_number)
# predicted efficacy
pred <- rep(NA, drug_number)
if (loo == FALSE) {
pred <- M[identical_idx]
error_predict <- abs(pred - sens)
} else {
for (i in 1:drug_number) {
# remove drug i, namely remove the i-th row
# get the dim info
dim_IMd <- c(drug_number - 1, col_num)
IM_d_loo <- array(IM_d[-i, ], dim = dim_IMd)
IM_subset_loo <- array(IM_subset[-i, ], dim = dim_IMd)
IM_superset_loo <- array(IM_superset[-i, ], dim = dim_IMd)
sens_loo <- sens[-i]
drug_idx_loo <- identical_idx[-i]
M_d_loo <- sumcpp1(IM_d_loo, drug_number - 1, col_num)
M_loo <- M_d_loo
maxval <- maxcpp1(IM_superset_loo, drug_number - 1, col_num)
minval <- mincpp1(IM_subset_loo, drug_number - 1, col_num)
min_subset_loo <- minval$min
min_index_loo <- minval$min_idx
max_superset_loo <- maxval$max
max_index_loo <- maxval$max_idx
cell <- is.nan(M_d_loo) & is.finite(max_superset_loo)
cell <- which(cell == TRUE)
cell2 <- is.nan(M_d_loo) & is.finite(min_subset_loo)
cell2 <- which(cell2 == TRUE)
# does the removed drug need max averaging
j_max <- which(cell == identical_idx[i])
# does the removed drug need min averaging
j_min <- which(cell2 == identical_idx[i])
if (length(j_max) != 0 && length(j_min) == 0) {
# index for the cell
cell_index <- cell[j_max]
drug_sub_cell <- !is.infinite(IM_superset_loo[, cell_index])
# the drug index which achieves max sensitivity
index <- max_index_loo[cell_index]
# the index of the dec of the drug with max sensitivity
dec_maxsens <- drug_idx_loo[index]
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_subset_loo[, dec_maxsens] < max_superset_loo[cell_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
max_superset_loo[cell_index] <- (max_superset_loo[cell_index] * k + sens_loo[j])/(k + 1)
k <- k + 1
}
}
pred[i] <- max_superset_loo[identical_idx[i]]
error_predict[i] <- abs(pred[i] - sens[i])
} else if (length(j_max) == 0 && length(j_min) != 0) {
cell2_index <- cell2[j_min]
drug_sub_cell <- !is.infinite(IM_subset_loo[, cell2_index])
index <- min_index_loo[cell2_index]
dec_minsens <- drug_idx_loo[index]
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_superset_loo[, dec_minsens] > min_subset_loo[cell2_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
min_subset_loo[cell2_index] <- (min_subset_loo[cell2_index] * k + sens_loo[j])/(k + 1)
k <- k + 1
}
}
pred[i] <- min_subset_loo[identical_idx[i]]
error_predict[i] <- abs(pred[i] - sens[i])
} else if (length(j_max) != 0 && length(j_min) != 0) {
cell_index <- cell[j_max]
drug_sub_cell <- !is.infinite(IM_superset_loo[, cell_index])
# the drug index which achieves max sensitivity
index <- max_index_loo[cell_index]
# the dec of the drug with max sensitivity
dec_maxsens <- drug_idx_loo[index]
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_subset_loo[, dec_maxsens] < max_superset_loo[cell_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
max_superset_loo[cell_index] <- (max_superset_loo[cell_index] * k + sens_loo[j])/(k + 1)
k <- k + 1
}
}
cell2_index <- cell2[j_min]
drug_sub_cell <- !is.infinite(IM_subset_loo[, cell2_index])
index <- min_index_loo[cell2_index]
dec_minsens <- drug_idx_loo[index]
# find the supersets of S(index,:) in S that has smaller sensitivity
supersets_small <- IM_superset_loo[, dec_minsens] > min_subset_loo[cell2_index]
# find common item with drug_sub_cell and supersets_small
common_cell <- which(drug_sub_cell & supersets_small)
if (length(common_cell) != 0) {
# max averaging
k <- 1
for (j in common_cell) {
min_subset_loo[cell2_index] <- (min_subset_loo[cell2_index] * k + sens_loo[j])/(k + 1)
k <- k + 1
}
}
pred[i] <- (max_superset_loo[identical_idx[i]] + min_subset_loo[identical_idx[i]])/2
error_predict[i] <- abs(pred[i] - sens[i])
} else {
# length(j_max)==0 && length(j_min)==0
pred[i] <- M_loo[identical_idx[i]]
error_predict[i] <- abs(pred[i] - sens[i])
}
}
}
return(list(dummy = M, error = error_predict, prediction = pred))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.