R/ssizeRNA_single.R

Defines functions ssizeRNA_single

Documented in ssizeRNA_single

#' Sample Size Calculations for Two-Sample RNA-seq Experiments 
#' with Single Set of Parameters
#' 
#' This function calculates appropriate sample sizes for two-sample 
#' RNA-seq experiments for a desired power in which mean and 
#' dispersion parameters are identical for all genes. 
#' Sample size calculations are performed at controlled false discovery rates, 
#' user-specified proportions of non-differentially expressed genes, 
#' mean counts in control group, dispersion, and fold change. 
#' A plot of power versus sample size is generated.
#' 
#' @import edgeR limma stats
#' 
#' @param nGenes total number of genes, the default value is \code{10000}.
#' @param pi0 proportion of non-differentially expressed genes, 
#'            the default value is \code{0.8}.
#' @param m pseudo sample size for generated data.
#' @param mu a vector (or scalar) of mean counts in control group 
#'           from which to simulate.
#' @param disp a vector (or scalar) of dispersion parameter 
#'             from which to simulate.
#' @param fc a vector (or scalar, or a function that takes an integer n 
#'                     and generates a vector of length n)
#'           of fold change for differentially expressed (DE) genes.  
#' @param up proportion of up-regulated genes among all DE genes, 
#'           the default value is \code{0.5}.
#' @param replace sample with or without replacement from given parameters. 
#'                See Details for more information.
#' @param fdr the false discovery rate to be controlled.
#' @param power the desired power to be achieved.
#' @param maxN the maximum sample size used for power calculations.
#' @param side options are "two-sided", "upper", or "lower".
#' @param cex.title controls size of chart titles.
#' @param cex.legend controls size of chart legend.
#' 
#' @details If a vector is input for \code{pi0}, sample size calculations 
#'          are performed for each proportion.
#' 
#' If the total number of genes is larger than length of \code{mu} or 
#' \code{disp}, \code{replace} always equals \code{TRUE}.
#' 
#' @return \item{ssize}{sample sizes (for each treatment) at which 
#'                      desired power is first reached.}
#' @return \item{power}{power calculations with corresponding sample sizes.}
#' @return \item{crit.vals}{critical value calculations with 
#'                          corresponding sample sizes.}
#' 
#' @author Ran Bi \email{biranpier@@gmail.com}, 
#'         Peng Liu \email{pliu@@iastate.edu}
#' 
#' @references Liu, P. and Hwang, J. T. G. (2007) Quick calculation for 
#' sample size while controlling false discovery rate with application 
#' to microarray analysis. \emph{Bioinformatics} 23(6): 739-746. 
#' 
#' Orr, M. and Liu, P. (2009) Sample size estimation while controlling 
#' false discovery rate for microarray experiments using ssize.fdr package. 
#' \emph{The R Journal}, 1, 1, May 2009, 47-53. 
#' 
#' Law, C. W., Chen, Y., Shi, W., Smyth, G. K. (2014). Voom: precision weights 
#' unlock linear model analysis tools for RNA-seq read counts. 
#' \emph{Genome Biology} 15, R29.
#' 
#' @seealso \code{\link{ssizeRNA_vary}}
#' 
#' @examples
#' mu <- 10                ## mean counts in control group for all genes
#' disp <- 0.1             ## dispersion for all genes
#' fc <- 2                 ## 2-fold change for DE genes
#' 
#' size <- ssizeRNA_single(m = 30, mu = mu, disp = disp, fc = fc, 
#'                         maxN = 20)
#' size$ssize              ## first sample size to reach desired power
#' size$power              ## calculated power for each sample size
#' size$crit.vals          ## calculated critical value for each sample size
#' 
#' @export
#' 
ssizeRNA_single <- function(nGenes = 10000, pi0 = 0.8, m = 200, mu, disp, 
                            fc, up = 0.5, replace = TRUE, fdr = 0.05, 
                            power = 0.8, maxN = 35, side = "two-sided", 
                            cex.title = 1.15, cex.legend = 1){ 
  
  sim <- sim.counts(nGenes, pi0, m, mu, disp, fc, up, replace)

  d_cpm <- DGEList(sim$counts)
  d_cpm <- calcNormFactors(d_cpm)
  group = rep(c(1, 2), each = m)  # treatment groups
  design <- model.matrix(~ factor(group))
  y <- voom(d_cpm, design, plot = FALSE)
  # convert read counts to log2-cpm with associated weights
  
  fit <- lmFit(y, design)
  fit <- eBayes(fit)
  fit$logcpm <- y$E  # normalized log-cpm value
  fit$weights <- y$weights  # precision weights for each observation 
  fit$www <- sqrt(2/m * apply(y$weights[, 1:m], 1, sum) * 
                    apply(y$weights[, (m+1):(2*m)], 1, sum) /
                    apply(y$weights, 1, sum))
  fit$Delta <- fit$coef[, 2] * fit$www  
  # effect size defined as weighted mean difference of log-cpm values, Delta_g
  
  dm <- mean((fit$Delta * sim$de)[sim$de!=0])
  ds <- sd((fit$Delta * sim$de)[sim$de!=0])
  sig <- density(fit$sigma)$x[which.max(density(fit$sigma)$y)]
  
  ret <- ssize.twoSampVaryDelta(deltaMean = dm, deltaSE = ds, sigma = sig, 
                                fdr = fdr, power = power, pi0 = pi0, 
                                maxN = maxN, side = side, 
                                cex.title = cex.title, cex.legend = cex.legend)
  return(ret)
}

Try the ssizeRNA package in your browser

Any scripts or data that you put into this service are public.

ssizeRNA documentation built on Aug. 20, 2019, 5:22 p.m.