View source: R/gtable_associations.R
gtable_ld_associations_gdata | R Documentation |
Compute linkage disequilibrium using snprelate_ld on the set of SNPs in the associations data frame and call gtable_ld_associations. Creates a gtable of a linkage disequilibrium, chromosomic positions, and association scores ggplots.
gtable_ld_associations_gdata(
df_assocs,
gdata,
pvalue_colname = "pvalues",
labels_colname = "probe_id",
diamonds = nrow(df_assocs) <= 40,
window = 15,
...
)
df_assocs |
SNP annotation data frame with columns chromosome, position, and as specified by parameters pvalue_colname and optionally labels_colname. |
gdata |
GenotypeData object, as returned by load_gds_as_genotype_data |
pvalue_colname |
Column name of df_snp with association values |
labels_colname |
Optional column name of df_snp with labels. Set NULL to remove labels. |
diamonds |
Should the values be displayed as diamonds or points ? Default is TRUE for up to 40 SNPs. |
window |
Window size for snprelate_ld. Forced to the total number of SNPs if diamonds is FALSE |
... |
Passed to gtable_ld_associations |
gtable
library(snplinkage)
gds_path <- save_hgdp_as_gds()
gdata <- load_gds_as_genotype_data(gds_path)
qc <- snprelate_qc(gdata, tagsnp = .99)
snp_idxs_mhc <- select_region_idxs(qc$gdata,
chromosome = 6, position_min = 29e6, position_max = 33e6)
df_assocs <- chisq_pvalues_gdata(qc$gdata, snp_idxs_mhc)
df_top_aim <- subset(df_assocs, rank(-pvalues, ties.method = 'first') <= 20)
#qc$gdata <- gdata_add_gene_annots(qc$gdata, rownames(df_top_aim))
qc$gdata <- gdata_add_gene_annots_aim_example(qc$gdata, rownames(df_top_aim))
plt <- gtable_ld_associations_gdata(df_top_aim, qc$gdata,
labels_colname = 'gene')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.