Nothing
## -----------------------------------------------------------------------------
library(santaR)
# data (keep the 3rd variable)
var1_data <- acuteInflammation$data[,3]
# metadata (common to all variables)
var1_meta <- acuteInflammation$meta
# 7 unique time-points
unique(var1_meta$time)
# 8 individuals
unique(var1_meta$ind)
# 2 groups
unique(var1_meta$group)
# 72 measurements for the given variable
var1_data
## ---- eval = FALSE------------------------------------------------------------
# var1_input <- get_ind_time_matrix( Yi=var1_data, ind=var1_meta$ind, time=var1_meta$time)
# var1_input
## ---- results = "asis", echo = FALSE------------------------------------------
var1_input <- get_ind_time_matrix( Yi=var1_data, ind=var1_meta$ind, time=var1_meta$time)
pander::pandoc.table(var1_input)
## ---- eval = FALSE------------------------------------------------------------
# var1_group <- get_grouping( ind=var1_meta$ind, group=var1_meta$group)
# var1_group
## ---- results = "asis", echo = FALSE------------------------------------------
var1_group <- get_grouping( ind=var1_meta$ind, group=var1_meta$group)
pander::pandoc.table(var1_group)
## -----------------------------------------------------------------------------
var_eigen <- get_eigen_spline( inputData=acuteInflammation$data, ind=acuteInflammation$meta$ind, time=acuteInflammation$meta$time)
## ---- eval=FALSE--------------------------------------------------------------
# # The projection of each eigen-spline at each time-point:
# var_eigen$matrix
## ---- results = "asis", echo = FALSE------------------------------------------
pander::pandoc.table(var_eigen$matrix)
## -----------------------------------------------------------------------------
# The variance explained by each eigen-spline
var_eigen$variance
# PCA summary
summary(var_eigen$model)
## ---- eval = FALSE------------------------------------------------------------
# # The projection of each eigen-spline at each time-point:
# get_eigen_DF(var_eigen)
#
# # $df
## ---- results = "asis", echo = FALSE------------------------------------------
tmpDF <- get_eigen_DF(var_eigen)
pander::pandoc.table(tmpDF$df)
## ---- eval = FALSE------------------------------------------------------------
# # $wdf
## ---- results = "asis", echo = FALSE------------------------------------------
pander::pandoc.table(tmpDF$wdf)
## ---- fig.width = 7, fig.height = 7, dpi = 80---------------------------------
library(gridExtra)
# generate all the parameter values across df
var_eigen_paramEvo <- get_param_evolution(var_eigen, step=0.1)
# plot the metric evolution
plot(arrangeGrob(grobs=plot_param_evolution(var_eigen_paramEvo, scaled=FALSE)))
# Scale the metrics for each eigen-spline between 0 and 1
plot(arrangeGrob(grobs=plot_param_evolution(var_eigen_paramEvo, scaled=TRUE)))
## ---- fig.width = 8, fig.height =8, dpi = 90----------------------------------
library(gridExtra)
# plot all eigen-projections
plot(arrangeGrob(grobs=get_eigen_DFoverlay_list(var_eigen, manualDf = 5)))
## ---- fig.width = 7, fig.height = 5, dpi = 80---------------------------------
# dfCutOff controls which cut-off is to be applied
plot_nbTP_histogram(var_eigen, dfCutOff=5)
## -----------------------------------------------------------------------------
var1 <- santaR_fit(var1_input, df=5, groupin=var1_group)
# it is possible to access the SANTAObj structure, which will be filled in the following steps
var1$properties
var1$general
var1$groups$Group1
## -----------------------------------------------------------------------------
var1 <- santaR_CBand(var1)
## ---- fig.width = 7, fig.height = 5, dpi = 96---------------------------------
santaR_plot(var1)
## -----------------------------------------------------------------------------
var1 <- santaR_pvalue_dist(var1)
# p-value
var1$general$pval.dist
# lower p-value confidence range
var1$general$pval.dist.l
# upper p-value confidence range
var1$general$pval.dist.u
# curve correlation coefficiant
var1$general$pval.curveCorr
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.