Nothing
#' Chloroplast alignment
#'
#' Amino acid alignment of 15 genes of 19 different chloroplast.
#'
#'
#' @name chloroplast
#' @docType data
#' @keywords datasets
#' @examples
#'
#' data(chloroplast)
#' chloroplast
#'
NULL
#' Laurasiatherian data (AWCMEE)
#'
#' Laurasiatherian RNA sequence data
#'
#'
#' @name Laurasiatherian
#' @docType data
#' @source Data have been taken from the former repository of the Allan Wilson
#' Centre and were converted to R format by \email{klaus.schliep@gmail.com}.
#' @keywords datasets
#' @examples
#'
#' data(Laurasiatherian)
#' str(Laurasiatherian)
#'
NULL
#' @keywords internal
"_PACKAGE"
#' Internal phangorn Functions
#'
#' Internal \pkg{phangorn} functions.
#'
#' @name phangorn-internal
#' @aliases phangorn-internal threshStateC coords map_duplicates
#' @keywords internal
NULL
#' Yeast alignment (Rokas et al.)
#'
#' Alignment of 106 genes of 8 different species of yeast.
#'
#'
#' @name yeast
#' @docType data
#' @references Rokas, A., Williams, B. L., King, N., and Carroll, S. B. (2003)
#' Genome-scale approaches to resolving incongruence in molecular phylogenies.
#' \emph{Nature}, \bold{425}(6960): 798--804
#' @keywords datasets
#' @examples
#'
#' data(yeast)
#' str(yeast)
#'
NULL
#' Morphological characters of Mites (Schäffer et al. 2010)
#'
#' Matrix for morphological characters and character states for 12 species of
#' mites. See vignette '02_Phylogenetic trees from morphological data' for
#' examples to import morphological data.
#'
#' @name mites
#' @docType data
#' @references Schäffer, S., Pfingstl, T., Koblmüller, S., Winkler, K. A.,
#' Sturmbauer, C., & Krisper, G. (2010). Phylogenetic analysis of European
#' Scutovertex mites (Acari, Oribatida, Scutoverticidae) reveals paraphyly and
#' cryptic diversity: a molecular genetic and morphological approach.
#' \emph{Molecular Phylogenetics and Evolution}, \bold{55(2)}, 677--688.
#' @keywords datasets
#' @examples
#' data(mites)
#' mites
#' # infer all maximum parsimony trees
#' trees <- bab(mites)
#' # For larger data sets you might use pratchet instead bab
#' # trees <- pratchet(mites, minit=200, trace=0, all=TRUE)
#' # build consensus tree
#' ctree <- root(consensus(trees, p=.5), outgroup = "C._cymba",
#' resolve.root=TRUE, edgelabel=TRUE)
#' plotBS(ctree, trees)
#' cnet <- consensusNet(trees)
#' plot(cnet)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.