Description Usage Arguments Value Author(s) Examples
Provides the estimated regression coefficients from the
fitted FMRs
model from an fmrsfit-class
1 2 3 4 | coefficients(object, ...)
## S4 method for signature 'fmrsfit'
coefficients(object, ...)
|
object |
An |
... |
Other possible arguments |
A numeric array of dimension-(nCov+1)
-nComp
Farhad Shokoohi <shokoohi@icloud.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | set.seed(1980)
nComp = 2
nCov = 10
nObs = 500
dispersion = c(1, 1)
mixProp = c(0.4, 0.6)
rho = 0.5
coeff1 = c( 2, 2, -1, -2, 1, 2, 0, 0, 0, 0, 0)
coeff2 = c(-1, -1, 1, 2, 0, 0, 0, 0, -1, 2, -2)
umax = 40
dat <- fmrs.gendata(nObs = nObs, nComp = nComp, nCov = nCov,
coeff = c(coeff1, coeff2), dispersion = dispersion,
mixProp = mixProp, rho = rho, umax = umax,
disFamily = "lnorm")
res.mle <- fmrs.mle(y = dat$y, x = dat$x, delta = dat$delta,
nComp = nComp, disFamily = "lnorm",
initCoeff = rnorm(nComp*nCov+nComp),
initDispersion = rep(1, nComp),
initmixProp = rep(1/nComp, nComp))
coefficients(res.mle)
|
BugReports: https://github.com/shokoohi/fmrs/issues
Comp.1 Comp.2
Intercept -1.010975273 2.82959558
X.1 -1.074208790 2.56118390
X.2 0.867308469 -1.24041307
X.3 2.061871052 -2.67969891
X.4 0.131998889 1.26462647
X.5 -0.006089305 2.41814396
X.6 0.036982382 -0.05336862
X.7 -0.130526357 0.25919575
X.8 -1.014279759 -0.15152879
X.9 1.981844440 0.04088745
X.10 -1.994586445 0.10757633
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.