inst/staticdocs/demo/ALL.r

# This is a demo for human embryo dataset from Fang et al
# 
# This human embryo expression dataset (available from <a href="http://www.ncbi.nlm.nih.gov/pubmed/20643359" target="20643359">http://www.ncbi.nlm.nih.gov/pubmed/20643359</a>) involves six successive developmental stages (S9-S14) with three replicates (R1-R3) for each stage, including:
## Fang: an expression matrix of 5,441 genes X 18 samples;
## Fang.geneinfo: a matrix of 5,441 X 3 containing gene information;
## Fang.sampleinfo: a matrix of 18 X 3 containing sample information.
###############################################################################
library(BioNet)
library(ALL)
data(ALL)
library(DLBCL)
data(interactome)

# Since several probesets represent one gene, we have to select one or concatenate them into one gene. One possibility is to use the probeset with the highest variance for each gene. It also maps the Affymetrix IDs to the identifiers of the network using the chip annotations and network geneIDs, which are unique, and returns the network names in the expression matrix. This reduces the expression matrix to the genes which are present in the network.
mapped.eset <- mapByVar(ALL, network=interactome, attr="geneID")
mapped.eset[1:5,1:5]

# extract network that only contains genes in mapped.eset
network <- dNetInduce(g=interactome, nodes_query=rownames(mapped.eset), knn=0, remove.loops=T, largest.comp=T)
g <- igraph.from.graphNEL(network)

# 1) preparation of node p-values
library(limma)
design <- model.matrix(~ -1 + factor(c(substr(unlist(ALL$BT), 0, 1))))
colnames(design)<- c("B", "T")
contrast.matrix <- makeContrasts(B-T, levels=design)
contrast.matrix 
fit <- lmFit(mapped.eset, design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
# get the corresponding p-values and and calculate the scores thereupon. 
pval <- fit2$p.value[,1]

# 2) identification of module
fdr_target <- 1e-14
module <- dNetPipeline(g=g, pval=pval, fdr=fdr_target)

g <- module
glayout <- layout.fruchterman.reingold(g)

# 3) color nodes according to communities identified via a spin-glass model and simulated annealing
#com <- spinglass.community(g, spins=3)
com <- walktrap.community(g, modularity=T)
com$csize <- sapply(1:length(com),function(x) sum(com$membership==x))
vgroups <- com$membership
colormap <- "yellow-darkorange"
palette.name <- visColormap(colormap=colormap)
mcolors <- palette.name(length(com))
vcolors <- mcolors[vgroups]

com$significance <- sapply(1:length(com), function(x) {
    community.significance.test <- function(g, vids, ...) {
        subg <- induced.subgraph(g, vids)
        within.degrees <- igraph::degree(subg)
        cross.degrees <- igraph::degree(g, vids) - within.degrees
        wilcox.test(within.degrees, cross.degrees, ...)
    }
    tmp <- suppressWarnings(community.significance.test(g, vids=V(g)$name[com$membership==x]))
    signif(tmp$p.value, digits=3)
})

# 4) size nodes according to degrees
vdegrees <- igraph::degree(g)

# 5) sort nodes: first by communities and then degrees
tmp <- data.frame(ind=1:vcount(g), vgroups, vdegrees)
ordering <- tmp[order(vgroups,vdegrees),]$ind

# 6) visualise graph using 1-dimensional arc diagram
visNetArc(g, ordering=ordering, labels=V(g)$geneSymbol, vertex.label.color=vcolors, vertex.color=vcolors, vertex.frame.color=vcolors, vertex.size=log(vdegrees)+0.1, vertex.label.cex=0.6)

# 7) visualise graph using circle diagram
# 7a) drawn into a single circle 
visNetCircle(g=g, com=com, ordering=ordering, colormap=colormap, vertex.label=V(g)$geneSymbol, vertex.size=igraph::degree(g)+5, vertex.label.color="black", vertex.label.cex=0.6, vertex.label.dist=0.75, vertex.shape="sphere", edge.color.within="grey", edge.color.crossing="black", edge.width=1, edge.lty=1, mark.shape=1, mark.expand=10)
# 7b) drawn into multiple circles
visNetCircle(g=g, com=com, circles="multiple", ordering=ordering, colormap=colormap, vertex.label=V(g)$geneSymbol, vertex.size=igraph::degree(g)+5, vertex.label.color="black", vertex.label.cex=0.6, vertex.label.dist=0.25, vertex.shape="sphere", edge.color.within="grey", edge.color.crossing="black", edge.width=1, edge.lty=1, mark.shape=1, mark.expand=10)

# 8) as comparison, also visualise graph on 2-dimensional layout 
mark.groups <- communities(com)
mark.col <- visColoralpha(mcolors, alpha=0.2)
mark.border <- visColoralpha(mcolors, alpha=0.2)
edge.color <- c("grey", "black")[crossing(com,g)+1]
visNet(g, glayout=glayout, vertex.label=V(g)$geneSymbol, vertex.color=vcolors, vertex.frame.color=vcolors, vertex.shape="sphere", mark.groups=mark.groups, mark.col=mark.col, mark.border=mark.border, mark.shape=1, mark.expand=10, edge.color=edge.color)

legend_name <- paste("C",1:length(mcolors)," (n=",com$csize,", pval=",signif(com$significance,digits=2),")",sep='')
legend("bottomleft", legend=legend_name, fill=mcolors, bty="n", cex=0.7)

# 9) color by score and FC
logFC <- fit2$coefficients[V(g)$name,1]
par(mfrow=c(1,2), mar=c(0.5,0.5,0.5,0.5))
visNet(g, glayout=glayout, pattern=V(module)$score, newpage=F, colorbar=F, mark.groups=mark.groups, mark.col=mark.col, mark.border=mark.border, mark.shape=1, mark.expand=10, edge.color=edge.color)
visNet(g, glayout=glayout, pattern=logFC, newpage=F, colorbar=F, mark.groups=mark.groups, mark.col=mark.col, mark.border=mark.border, mark.shape=1, mark.expand=10, edge.color=edge.color)

# 10) color by additional data
tmp <- substr(unlist(ALL$BT), 0, 2)
ind <- union(which(tmp=="B4"), which(tmp=="T3"))
data <- mapped.eset[V(g)$name,ind]
colnames(data) <- tmp[ind]
visNetMul(g=g, data=data, height=ceiling(sqrt(ncol(data)))*2, newpage=T,glayout=glayout,colormap="darkgreen-lightgreen-lightpink-darkred",vertex.label=NA,vertex.shape="sphere", vertex.size=18,mtext.cex=0.8,border.color="888888", mark.groups=mark.groups, mark.col=mark.col, mark.border=mark.border, mark.shape=1, mark.expand=10, edge.color=edge.color)

# 11) color by additional data (be reordered)
sReorder <- dNetReorder(g, data, feature="edge", node.normalise="degree", amplifier=2, metric="none")
visNetReorder(g=g, data=data, sReorder=sReorder, height=ceiling(sqrt(ncol(data)))*2, newpage=T, glayout=glayout, colormap="darkgreen-lightgreen-lightpink-darkred", vertex.label=NA,vertex.shape="sphere", vertex.size=18,mtext.cex=0.8,border.color="888888", mark.groups=mark.groups, mark.col=mark.col, mark.border=NA, mark.shape=1, mark.expand=10, edge.color=edge.color)

Try the dnet package in your browser

Any scripts or data that you put into this service are public.

dnet documentation built on Feb. 20, 2020, 5:08 p.m.