Nothing
#' Function to aggregate p values
#'
#' \code{dPvalAggregate} is supposed to aggregate a input matrix p-values into a vector of aggregated p-values. The aggregate operation is applied to each row of input matrix, each resulting in an aggregated p-value. The method implemented can be based on the order statistics of p-values or according to Fisher's method or Z-transform method.
#'
#' @param pmatrix a data frame or matrix of p-values
#' @param method the method used. It can be either "orderStatistic" for the method based on the order statistics of p-values, or "fishers" for Fisher's method (summation of logs), or "Ztransform" for Z-transform test (summation of z values, Stouffer's method) and the weighted Z-test, or "logistic" for summation of logits
#' @param order an integeter specifying the order used for the aggregation according to the order statistics of p-values
#' @param weight a vector specifying the weights used for the aggregation according to Z-transform method
#' @return
#' \itemize{
#' \item{\code{ap}: a vector with the length nrow(pmatrix), containing aggregated p-values}
#' }
#' @note For each row of input matrix with the \eqn{c} columns, there are \eqn{c} p-values that are uniformly independently distributed over [0,1] under the null hypothesis (uniform distribution). According to the order statisitcs, they follow the Beta distribution with the paramters \eqn{a=order} and \eqn{b=c-order+1}. According to the Fisher's method, after transformation by \eqn{-2*\sum^clog(pvalue)}, they follow Chi-Squared distribution. According to the Z-transform method, first converts the one-tailed P-values into standard normal deviates Z, then combines Z via \eqn{\frac{\sum^c(w*Z)}{\sum^c(w^2)}}, where \eqn{w} is the weight (usually square root of the sample size if the weighted Z-test; 1 if Z-transform test), and finally the combined Z follows the standard normal distribution to test the cumulative/aggregated evidence on the common null hypothesis. The logistic method is defined as \eqn{\sum^clog(\frac{pvalue}{1-pvalue}) * 1/C}, where \eqn{C=sqrt((k pi^2 (5 k + 2)) / (3(5 k + 4)))}, following Student's t distribution. Generally speaking, Fisher's method places greater emphasis on small p-values, while the Z-transform method on equal footings, the logistic method provides a compromise between these two. In other words, the Z-transform method does well in problems where evidence against the combined null is spread more than a small fraction of the individual tests, or when the total evidence is weak; Fisher's method does best in problems where the evidence is concentrated in a relatively small fraction of the individual tests or when the evidence is at least moderately strong.
#' @export
#' @seealso \code{\link{dPvalAggregate}}
#' @include dPvalAggregate.r
#' @examples
#' # 1) generate an iid uniformly-distributed random matrix of 1000x3
#' pmatrix <- cbind(runif(1000), runif(1000), runif(1000))
#'
#' # 2) aggregate according to the order statistics
#' ap <- dPvalAggregate(pmatrix, method="orderStatistic")
#'
#' # 3) aggregate according to the Fisher's method
#' ap <- dPvalAggregate(pmatrix, method="fishers")
#'
#' # 4) aggregate according to the Z-transform method
#' ap <- dPvalAggregate(pmatrix, method="Ztransform")
#'
#' # 5) aggregate according to the logistic method
#' ap <- dPvalAggregate(pmatrix, method="logistic")
dPvalAggregate <- function (pmatrix, method=c("orderStatistic", "fishers", "Ztransform", "logistic"), order=ncol(pmatrix), weight=rep(1,ncol(pmatrix)))
{
method <- match.arg(method)
if (is.vector(pmatrix)){
pmatrix <- matrix(pmatrix, nrow=length(pmatrix), ncol=1)
}else if(is.matrix(pmatrix) | is.data.frame(pmatrix)){
pmatrix <- as.matrix(pmatrix)
}else if(is.null(pmatrix)){
stop("The input pmatrix must be not NULL.\n")
}
if(is.null(rownames(pmatrix))){
rownames(pmatrix) <- seq(1,nrow(pmatrix))
}
nr <- nrow(pmatrix)
nc <- ncol(pmatrix)
if(method == "orderStatistic"){
if(is.null(order)){
order <- nc
}
order <- as.integer(order)
if(order < 1){
order <- 1
}else if(order > nc){
order <- nc
}
omatrix <- pmatrix
for (j in 1:nr) {
omatrix[j,] <- sort(as.numeric(pmatrix[j,]), na.last=T)
}
x <- as.numeric(omatrix[,order])
ap <- stats::pbeta(x, shape1=order, shape2=nc-order+1) # distribution function for Beta distribution
names(ap) <- rownames(pmatrix)
}else if(method == "fishers"){
fmatrix <- pmatrix
# replace those zeros with the minumum of non-zeros
fmatrix[fmatrix==0] <- min(fmatrix[fmatrix!=0])
fmatrix <- log(fmatrix)
x <- -2*apply(fmatrix, 1, sum)
ap <- stats::pchisq(x, df=2*nc, lower.tail=F) # distribution function for Chi-Squared distribution
names(ap) <- rownames(pmatrix)
}else if(method == "logistic"){
fmatrix <- pmatrix
# replace those zeros with the minumum of non-zeros
fmatrix[fmatrix==0] <- min(fmatrix[fmatrix!=0])
# replace those ones with the maximum of non-ones
fmatrix[fmatrix==1] <- max(fmatrix[fmatrix!=1])
fmatrix <- log(fmatrix/(1-fmatrix))
x <- apply(fmatrix, 1, sum)
x <- x * (-1/sqrt(nc*pi^2*(5*nc+2)/(3*(5*nc+4))))
ap <- stats::pt(x, df=5*nc+4, lower.tail=F) # distribution function for Student t distribution
names(ap) <- rownames(pmatrix)
}else if(method == "Ztransform"){
if(is.null(weight)){
weight <- rep(1, ncol(pmatrix))
}
zmatrix <- (stats::qnorm(pmatrix, lower.tail=F) %*% weight)/sqrt(sum(weight^2))
ap <- stats::pnorm(zmatrix, lower.tail=F) # distribution function for normal distribution
names(ap) <- rownames(pmatrix)
}
return(ap)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.