Nothing
# modified on Feb 12, 2019
# rename rootV2TransMat to rv2Transformer
#
# modified on Jan 14, 2019
# (1) based on the R code sent by Zeyu on Jan. 14, 2019
#
# created on Jan 12, 2019
# (1) root + Voom transformation minimizing sum of subject-specific
# squared difference between sample mean and sample median
# v3 created on Feb. 25, 2018
# (1) first obtain cpm (counts per million) for each column, then do log transformation
# (2) combine new V transformtion and X transformation
#
## sum of subject-specific squared difference between sample mean
## and sample median
#getmm2sum<-function(mat)
#{
# md=apply(mat, 2, median, na.rm=TRUE)
# me=apply(mat, 2, mean, na.rm=TRUE)
# mm2sum=sum((md-me)^2, na.rm=TRUE)
# return(mm2sum)
#}
#
rv2Transformer.default<-function(eta,mat, lib.size=NULL)
{
if(is.null(lib.size))
{
lib.size=colSums(mat)
}
tt <- t(mat + 0.5)/(lib.size + 1) * 1e+06
mat2 <- t(tt^(1/eta)/(1/eta))
md=apply(mat2, 2, median, na.rm=TRUE)
me=apply(mat2, 2, mean, na.rm=TRUE)
res=sum((md-me)^2, na.rm=TRUE)
return(res)
return(res)
}
#getRootTransX=function(mat, low=0.0001, upp=1000)
rv2Transformer=function(mat, low=0.0001, upp=1000, lib.size=NULL)
{
res.eta=optimize(rv2Transformer.default, mat=mat,lower=low, upper=upp,
lib.size=lib.size)
#mat2=mat^(1/res.eta$minimum)/(1/res.eta$minimum)
eta.optim=res.eta$minimum
if(is.null(lib.size))
{
lib.size=colSums(mat)
}
tt <- t(mat + 0.5)/(lib.size + 1) * 1e+06
mat2 <- t(tt^(1/eta.optim)/(1/eta.optim))
rownames(mat2)=rownames(mat)
colnames(mat2)=colnames(mat)
res=list(res.eta=res.eta, eta=eta.optim, mat2=mat2)
invisible(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.