Nothing
# modified on Feb 12, 2019
# (1) rename logV2TransMat to lv2Transformer
#
# modified on Jan 14, 2019
# (1) Zeyu sent to me the R code revised on Feb. 25, 2018
#
# created on Jan 12, 2019
# (1) log + Voom transformation minimizing sum of subject-specific
# squared difference between sample mean and sample media
#
# v3 created on Feb. 25, 2018
# (1) first obtain cpm (counts per million) for each column, then do log transformation
# (2) combine new V transformtion and X transformation
#
# v2 created on Feb. 13, 2018
# (1) fixed a bug: 'aa' should be 'vec'
# (2) fixed a bug in 'getVLogTransMat':
# mat2 <- t(log2(t(mat2 + 1/delta)/(lib.size + 1) * 1e+06))
# should be
# mat2 <- t(log2(t(mat + 1/delta)/(lib.size + 1) * 1e+06))
# created on Feb. 13, 2018
# v4 created on Feb. 13, 2018
# (1) added 'na.rm=TRUE'
# (2) simplified R code
lv2Transformer.default<-function(delta, mat, lib.size=NULL)
{
if(is.null(lib.size))
{
lib.size=colSums(mat)
}
tt <- t(mat + 0.5)/(lib.size + 1) * 1e+06
mat2 <- t(log2(tt+1/delta))
md=apply(mat2, 2, median, na.rm=TRUE)
me=apply(mat2, 2, mean, na.rm=TRUE)
res=sum((md-me)^2, na.rm=TRUE)
return(res)
}
lv2Transformer=function(mat, lib.size=NULL, low=0.001, upp=1000)
{
res.delta=optimize(lv2Transformer.default, mat=mat, lib.size=lib.size,
lower=low, upper=upp)
delta.optim = res.delta$minimum
if(is.null(lib.size))
{
lib.size=colSums(mat)
}
tt <- t(mat + 0.5)/(lib.size + 1) * 1e+06
mat2 <- t(log2(tt+1/delta.optim))
res=list(res.delta=res.delta, delta=delta.optim, mat2=mat2)
invisible(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.